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Abstract—This paper explores network-side cellular user local-
ization using fingerprints created from the angle measurements
enabled by 5G. Our key idea is a binning-based fingerprint-
ing technique that leverages multipath propagation to create
fingerprint vectors based on angles of arrival of signals along
multiple paths at each user. In network simulations that recreate
urban environments with 3D building geometry and base station
locations for a major city, our binning-based fingerprinting for
5G achieves significantly lower localization errors with a single
base station than signal strength-based fingerprinting for LTE.

I. INTRODUCTION

Cellular carriers perform user localization to infer the loca-
tion of a user making an emergency call (as required by the
Enhanced 9-1-1 system [2]) and optimize user performance in
other potential use-cases such as handoff prediction [6]. Car-
riers must localize users purely using network-side techniques
such as radio channel measurements since they do not have
access to GPS information recorded by a user equipment (UE).

In LTE networks, the simplest and most coarse-grained
network-side localization technique is called Tracking Area
Update in which the base station (BS) that a user is connected
to is reported [7]. LTE standards also include the Observed
Time Difference of Arrival (OTDoA) technique, which uses
BSes’ locations and time difference of arrival of signals from
different BSes at an user equipment (UE) to estimate the
user’s location. OTDoA is a form of a geometric technique
that estimates the distances of a user from given reference
points such as the surrounding BSes.

Fingerprinting techniques, in contrast, take a data-driven
approach to localization. A fingerprint database is created from
channel measurements such as the received signal strength
from several BSes for each spatial grid (e.g., a 50m×50m
geographic area). Fingerprints for a user are matched to those
in the database to estimate the grid the user is located in [8],
[11], [13]. Fingerprinting techniques for LTE have been shown
to outperform geometric techniques in a recent large-scale
study using real LTE datasets [11] achieving a 300-1000m
lower localization error than a geometric approach for a
50m×50m grid size. This result is also suggestive of the
difficulty of accurate geometric modeling of cellular networks.

In 5G, the use of antenna arrays enables measurements of
angle of arrival of signals at the receiver (UE or BS). Such
angle measurements have been used to localize WiFi users
using geometric techniques that estimate the angles of a user

with respect to multiple reference points such as WiFi access
points [4], [9], [15], [17], [18], [22] and then use trilateration
to localize the user. But, these techniques typically assume the
existence of line-of-sight (LoS) transmissions to estimate the
angle of a user with respect to a BS. Further, they assume
availability of multiple reference points for trilateration.

But, applying angle-based geometric techniques to localize
cellular UEs is challenging. First, a cellular UE may not
have LoS transmissions from a BS in indoor or outdoor
environments due to blockage by buildings or other objects.
Second, a UE may only be in the range of a single BS, e.g., in
sub-urban or rural environments with a sparse deployment of
BSes. Third, multipath propagation makes it hard to accurately
determine the angle of the UE with respect to a BS based on
the angles of arrival of signals at the receiver.

Given the limitations of geometric techniques, we ask if
angle measurements can localize users through a fingerprinting
technique. Our intuition is that a high degree of multipath with
distinct angles of arrival along each path could be used to
create a unique location fingerprint. Based on this intuition,
this paper addresses two main questions:

(1) How to create fingerprints from angle measurements
in presence of multipath propagation? Multipath propagation
results in multiple copies of the signal arriving at the receiving
antenna with different angle, power, and delay. With distinct
angles measured for each of the paths, which angle do we treat
as a fingerprint? In case of an unequal number of paths at two
locations, how do we compare angle measurements? Even if
the number of paths is identical, how do we order the paths
in a consistent manner across measurements in the absence of
any metadata about each path?

(2) How does the accuracy of angle-based fingerprinting
in 5G compare to RSRP-based fingerprinting available in
LTE? Since 5G deployments are in early stages with limited
availability, it is challenging to conduct a large scale com-
parative study between LTE and 5G. Further, our efforts to
measure angle information on available 5G smartphones such
as Samsung Galaxy S10 show that well-known diagnostic tools
such as MobileInsight [10] do not reveal angle information
even when connected to a 5G BS. Hence, we need an
experimental setup that enables both RSRP and angle-related
channel measurements needed for localization.

Our key idea is a binning-based fingerprinting technique
that outputs a constant-size vector based on the zenith angle,



the azimuth angle, and the received power along all the
observed paths. Each element in the vector indicates whether
the power received in an angular bin is above or below a
threshold value. This technique has several advantages. First,
fingerprints are of the same form independent of the number of
paths, which makes it straightforward to compare fingerprints
using standard distance metrics. Second, the uniqueness of
angle measurements in the fingerprint can be maintained by
choosing a sufficiently long vector. Third, the fingerprint only
uses power as a binary indicator, hence it is robust to the
higher variations in received power resulting from the use
of millimeter wave (mmWave) radios in 5G. Finally, the
technique is useful in creating fingerprints even if a single
BS is observed by a UE. While our technique can be applied
to any wireless network where angle measurements can be
performed, we explore its feasibility in 5G networks.

Our comparative study uses a novel simulation methodol-
ogy in that it recreates outdoor cellular environments with
3D building geometry data in a given area, actual LTE BS
locations from a cellular carrier, and potential 5G BS locations
selected among locations available to that cellular carrier. To
our knowledge, this is a first study that evaluates localization
approaches by combining realistic building geometries and
BS locations. We use the ns-3 network simulator to collect
extensive measurements for UEs with dual-stack radios (LTE
and 5G mmWave). Our experiments cover geographic area in
and around Atlanta, USA.

We present the first comparison of localization techniques
for LTE and 5G, which respectively use the signal strength
measurements and angle measurements for fingerprinting.
These are our key findings in this exploratory work:
• Our binning-based localization using azimuth and zenith
angles from one 5G mmWave BS has more than 70m lower
median error than RSRP-based localization with one LTE
BS due to the directionally insensitive nature of RSRP.

• Channel measurements from multiple BSes significantly
reduce errors for both binning-based and RSRP-based local-
ization, albeit binning-based localization has a 1.7m higher
median error than RSRP-based localization in this case.

• A baseline angle-based technique, using mean angle as a
fingerprint for localization, has up to 22.5m higher median
error than binning-based localization, thereby showing the
value of our binning-based fingerprinting technique.

II. BACKGROUND

In this section, we provide background on angle measure-
ments in wireless networks and on emerging 5G networks.

Angle measurements: In a three-dimensional space, the
direction is specified by an azimuth angle in the horizontal
plane and a zenith angle in the vertical plane as shown in
Figure 1(a). For a directional wireless communication along a
line of sight (LoS) between a trasmitter and a receiver, the 3D
angle at which the transmitter sends a wireless signal is called
the angle of departure (AoD), and then angle at which the
receiver receives the signal is called the angle of arrival (AoA).
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Zenith Angle
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(c) Multipath propagation causes UE to receive signals from LoS and NLoS
paths with different AoA and power.

Fig. 1. Illustration of azimuth, zenith, AoA, AoD.

Figure 1(b) shows AoA and AoD for LoS communication. Due
to a combination of factors such as reflection and diffraction,
wireless signals arrive at the receiver along multiple paths.
Hence, a receiver typically observes multiple signal paths with
distinct angles of arrival as shown in Figure 1(c).

The estimation of angle of arrival depends on the availability
of antenna arrays in the receiver radio. The basic idea is to
measure the phase shift in the arriving signal at consecutive
antennas, and combining it with the space separation between
these antennas to estimate the angle of arrival of signal. The
phase shift can be obtained by reading the channel state infor-
mation (CSI) matrix reported by radios. The CSI matrix can
then be used by well-known high resolution AoA estimation
algorithms such as MUSIC and ESPIRIT to estimate the AoA
of not just one, but multiple paths at the same time [14], [16].

5G cellular networks: 5G operates in sub-6GHz as well
as mmWave frequency ranges. In part to support the higher
mmWave frequencies that are susceptible to interference, 5G
BSs and UEs employ 8×8 phased-array antennas for transmit
and receive beamforming, respectively, in order to improve
the SNR while minimizing co-channel interference. Further,
due to the shorter range of mmWave communication, such 5G
BSs will need to be deployed with high density with inter-cell
distance of a few hundred metres.

For UE localization, deployment of smaller cells can already
help estimate user location to within a few hundred meters
simply based on the tracking area update of the BS a UE
is connected to. Hence, more sophisticated UE localization
strategies (e.g., geometric or fingerprinting based strategies)
would need to provide location accuracy within few 10s
of meters for them to be effective. While a 5G network
can continue to use localization techniques developed for
LTE networks such as RSRP-based fingerprinting, the use
of antenna arrays at the 5G transceivers potentially enables
estimation of AoA and its use for UE localization [1].
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Fig. 2. Fingerprinting localization architecture

III. ANGLE-BASED LOCALIZATION DESIGN

We first describe the components of our overall localization
system (Section III-A), followed by a description of its key
technique of binning-based fingerprint using angle measure-
ments (Section III-B).

A. System Architecture

We consider a deployment of 5G BSes alongside existing
LTE BSes and 5G UEs supporting dual connectivity with both
LTE and 5G radios.1 A UE collects radio channel measure-
ments with respect to both LTE and 5G BSes, and reports them
to the serving BS through the reference signal. The serving
BS uses these measurements to estimate the channel quality
and can also forward them in real-time to a controller server,
typically owned and deployed by the carrier, for localization.

A UE collects channel measurements that are used by LTE
localization techniques (e.g., RSRP and RSRQ), as well as
the following 5G-specific measurements for any 5G BSes it
observes. The UE records the BS identifier for all 5G BSes
in range, and on each of the observed paths from those BSes,
it measures (1) the azimuth angle of arrival of signal in the
horizontal plane, (2) the zenith angle of arrival in the vertical
plane, and (3) the power of the received signal for the path.
Techniques to measure azimuth and zenith AoAs are covered
in this survey [20]. The power values can be obtained from
the power-delay profile, which characterizes arrival times of
different signal paths versus their received power [21].

Offline localization training: The workflow for the training
phase of localization is shown in Figure 2. During the offline
training phase, first, the geographic area is partitioned into
square grids of size g × g (unit: meters). Second, s locations
are sampled within each grid to collect geographical location
as well as localization-related channel measurements from
the all BSes observed at a location. For each location, the
fingerprint is extracted using our fingerprinting technique.
Then, the database records the fingerprint for the grid by
averaging the fingerprints of the s locations, while the grid’s
geographic location is represented by its center.

There are two broad methods to populate such a finger-
printing database. In the drive test approach, a test device

1In dual connectivity, when both 5G and LTE are available, a UE is actively
connected to both but preferentially uses the 5G radio for transmissions. When
5G is unavailable, the system falls back to an LTE-only mode.

is attached to a moving vehicle that records the radio mea-
surements and geographic locations (e.g., using GPS) for all
possible streets [5]. In the crowd-sourcing approach [11],
which is used in a production Tier-1 ISP, the geolocation of
a UE is reported by a smartphone application on the UE and
the fingerprint for the same UE at the same time is obtained
using ongoing radio channel measurements.

Online fingerprint matching: Figure 2 also shows the steps
of the online matching phase. First, a UE measures and reports
localization-related channel measurements to the serving BS.
Next, a fingerprint is computed by the localization controller
based on reported measurements using our fingerprinting al-
gorithm. Finally, the fingerprint is matched to the existing
fingerprints in a database. The closest fingerprint based on
Euclidean distance is selected and the geographic location
associated with that fingerprint is the final output.

B. Binning-Based Fingerprinting

Consider a UE that observes one or more BSes at a location.
For each BS r, the UE measures a channel vector cr of
(azimuth angle, zenith angle, power) for each path from that
BS. We convert this channel vector cr into a constant-sized
vector fingerprint fr using the technique described below. Our
overall fingerprint F at one location is a key-value map from
each BS r to its fingerprint vector fr.

We next describe how fingerprint fs is obtained from its
channel vector cr. The challenge here is an unequal number of
paths across locations because of non-uniform distribution of
buildings and other objects which cause reflections/diffractions
of signals. It presents major challenges of (1) selecting proper
paths as the fingerprint and (2) comparing angles across
multiple paths at different locations. The technique below
creates fingerprints fr as constant-sized vectors independent
of the number of paths from a BS or their ordering or any
other path characteristics (e.g., LoS vs. non LoS paths).

To compute fr, we divide each plane (azimuth or zenith)
in b bins such that the i-th bin, where 0 < i < (b − 1),
represents the range of angles from 360

b
× i to 360

b
× (i +

1) in that plane. We construct the fingerprint v azimuth =
(v1, v2, ..., vb), where vi represents the total power received in
the i-th bin for the azimuth angle. Each vi in is defined as
the sum of the power received along any path whose azimuth
angle falls in the i-th bin. If no such paths exist, vi is set
to zero. Similarly, we construct the vector v zenith for the
zenith angles. Our preliminary fingerprint fr is a concatenation
of v azimuth with v zenith.

Unlike LTE, 5G also operates in millimeter wave frequen-
cies that attenuate more easily resulting in a high variance of
power. In our experiments, the variance leads to inaccurate
fingerprints due to noise in the measurements. To mitigate the
noise, we propose to discretize aggregate power in a bin into
a binary value when building the fingerprint for each location.
We define a threshold value t of the aggregate power in a
bin. A value in the fingerprint vector fr above the threshold
t is set to 1, and below it set to 0. The default value for this
threshold t is set to 0 based on the experiment in Section

3



0 0 4+6 0 0 0 0 0 0 0.3

Path Id 0 1 2
BS Id 11 11 11
AoA 80 91 310

Power 4 6 0.3

0 0 1 0 0 0 0 0 0 0

①

②

③

0° 360°324°36° 72° 108°

f11:

Fig. 3. Example of fingerprint construction for azimuth plane: 1. measure
azimuth AoAs from BS 11; 2. fill power into bins based on AoAs for paths
(b = 10); 3. discretize aggregate power into binary value as fingerprint f11.

IV-B. This final step produces the fingerprint vector fr. We
empirically determine the value of parameters used by our
approach (Section IV-B).

Fig. 3 shows an example of constructing a fingerprint for the
azimuth angle only. The first step is to measure the azimuth
angles of arrival for multiple paths from the serving base
station r = 11 at location A where there are 3 measurable
paths with different azimuth angles and power. The second
step is to divide the plane for azimuth angles into b = 10 bins,
for example, and fill the power of paths to corresponding bins.
In the third step, we discretize the aggregate power of each
bin into a binary value to output the fingerprint f11.

Fingerprint matching: We match fingerprints by comput-
ing the distance among them as follows. Consider fingerprints
F1 and F2 and the set of BSes R common to these fingerprints.
If no BSes are common, i.e., R is null, then F1 and F2

have infinite distance among them. Otherwise, for each BS
r in R, we compute the euclidean distance between the
corresponding fingerprint vectors. Here, we depend on the our
fingerprinting algorithm, which outputs uniform sized vectors
as fingerprints. Finally, the distance between F1 and F2 is the
sum of fingerprint distances for each BS r in R.

IV. EVALUATION

We evaluate our localization technique using network sim-
ulations of urban environments constructed using real-world
maps (Section IV-A). We first tune the parameters of our
binning-based fingerprinting technique (Section IV-B) and
compare it to other LTE and 5G fingerprinting techniques
(Section IV-C, IV-D) in terms of their localization errors.

A. Experimental Setup

We use ns-3 to perform network-level simulations of cellular
networks with dual connectivity of LTE and 5G mmWave
radios. ns-3 mmWave module models several scenarios such
as rural, urban, outdoor, and indoor [12]. We start with a
scenario named Urban Macro, which simulates BSes located
above roofs of buildings and UEs present in an outdoor
environment. The probabilities of LoS and NLoS paths are set
and paths with lower power are ignored according to 3GPP’s
recommendation [1]. 5G BSes are equipped with 64 (8 × 8)
antennas with the height of 25m. UEs are equipped with 16
(4 × 4) antennas with the height of 1.6m. We simulate a

UE moving linearly from the left edge to the right edge in
each area, and recording a channel measurement every 0.5m.
For each experiment, we repeat this process until 600×600
samples are collected in an area, which are equally divided
between the training and test datasets.

We use three external data sources in ns-3 simulations. (1)
We recreate the urban landscape in Atlanta, USA using the
building location and geometry (length, breadth and height)
from OpenStreetMap [3]. We randomly pick two 300m×300m
areas referred to as AreaLo and AreaHi, which respectively
have 1% and 35% building occupancy, i.e., the ratio of floor
area of all buildings to the total area. (2) We add LTE BSes,
known as eNodeBs, at the actual eNodeB locations for a
major carrier in the US. AreaLo and AreaHi covered by
1 eNodeB and 3 eNodeBs respectively. (3) Since 5G BSes
with mmWave are in early stages of deployment, we consider
locations that are co-located with existing poles (a pole is a
potential deployment site) and place 5G mmWave BSes with
an equal spacing of 100m in x- and y-dimensions.

B. Configuring Binning-Based Technique

To choose the parameters of our binning-based technique,
we evaluate the sensitivity of each parameter’s values on
localization error, while keeping the other parameters at their
default values of b = 36, t = 0, g = 2m×2m, s = 5. Figure 4
presents the CDFs of localization errors for these experiments
for AreaHi. We have similar findings for AreaLo.

Number of bins: A greater number of bins b improves
the resolution and can result in unique fingerprints for each
location. But, more bins could also make the fingerprints more
susceptible to noise due to variations in angle at the same
location. We experiment by setting the number of bins b to
72, 36, and 18, which correspond to an angular range of 5°,
10° and 20° respectively. Figure 4(a) shows that 36 bins and 72
bins have a smaller median error (4.8m) than 18 bins (10.2m),
and 72 bins has a higher error than 36 bins at the tail. Thus,
we pick 36 as the number of bins.

Threshold to discretize power: Figure 4(b) shows that the
median localization errors for t = 0, t = 1 and t = 2 are
5.5m, 32.6m and 82.4m respectively. Thus, we select t = 0.

Grid size: We experiment with grid sizes g of 2m ×
2m, 5m× 5m and 10m× 10m. Location samples per grid s
is proportional to the grid size. Figure 4(c) shows that median
localization error decreases from 10.7m to 5.5m and 2.3m
when the grid size decreases from 10m×10m to 5m×5m and
2m× 2m. In practice, training data comes from GPS, which
typically achieves an accuracy of 5m [19]. Hence, we present
results for the 5m×5m grid size in later experiments. We note
that a smaller grid size of 2m×2m improves accuracy for all
techniques but does not alter the relative ordering among them.

Number of samples: While the above parameters are
internal to our binning-based localization, the number of
samples is an external parameter that affects the overhead
of training data collection in our simulations as well as in
practice. We experiment by setting the number of sampled
locations per grid s for training to 2, 5, and 10 for a grid size of
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Fig. 4. Configuring parameters of the binning-based localization in AreaHi.
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Fig. 5. Localization error in AreaLo (1 BS)
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Fig. 6. Localization error in AreaHi (1 BS)
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Fig. 7. Localization error in AreaHi (multiple BSes)

5m×5m. We find that 5 and 10 samples per grid have a similar
median error as well as average error (median: 5.0m; average:
13.4m), both smaller than those of 2 samples (median: 12.0m;
average: 23.7m). Because of the higher overhead of collecting
10 samples per grid, we choose 5 samples for 5m×5m grids.

C. Lower Density Area

We compare our binning technique, referred to as 5G-
Angle-Binning against two techniques. 5G-Angle-Mean is
a baseline that uses the average of azimuth angles and the
average of zenith angles across all paths received from the
serving BS as the fingerprint. It helps us quantify the benefit of
our binning-based technique over simply using the mean angle
as the fingerprint. LTE-RSRP uses RSRP measurements for
the serving LTE BS and neighboring BSes similar to Margolies
et al [11]. In the following description, parentheses after a
technique’s name shows the type and the number of BSes
whose signals are used for fingerprinting.

We first show results for AreaLo where channel measure-
ments from the serving LTE eNodeB or the serving 5G
BS are used for localization. Comparing 5G-Angle-Binning
(1 5G BS) with LTE-RSRP (1 eNodeB) in Figure 5, their
median errors are 5.8m and 78.2m respectively. The reason
LTE-RSRP (1 eNodeB) has a higher error is because signal
strength is a directionally insensitive metric. Thus, localization
errors are high when RSRP from only one eNodeB can be
measured. But, a binning-based approach leverages multipath
propagation due to physical objects (e.g., buildings) in an
outdoor environment. In this experiment, ns-3 reports 7.5 paths
on average from the 5G BS to each location. These paths help

create unique angle-based fingerprints across grids, thereby
improving the accuracy of 5G-Angle-Binning (1 5G BS).

How does our binning-based fingerprinting compare to a
simple angle-base fingerprinting? In Figure 5, the median error
of 5G-Angle-Binning (1 5G BS) (5.8m) is close to the median
error of 5G-Angle-Mean (5.1m) but 5G-Angle-Binning (1
5G BS) has a much smaller average error (9.5m) than 5G-
Angle-Mean (21.1m). This is because taking the average of
of the AoA’s from different paths loses path-specific angle
information while the binning-based technique preserves it in
the form of unique fingerprints.

D. Higher Density Area

Figure 6 shows results from AreaHi using channel mea-
suring from the serving BS. 5G-Angle-Binning (1 5G BS)
achieves a median error of 5.5m and a mean error of 14.2m,
which is similar to its results in the lower density area. While a
binning-based fingerprinting uses multipath to its advantage, a
higher density area which creates additional paths (19.0 signal
paths on average in this experiment) does not necessarily
improve its accuracy. 5G-Angle-Mean performs worse in a
higher density area and its median error increases to 28.0m,
which shows the value of our binning-based fingerprinting
over simple techniques for angle-based fingerprinting. LTE-
RSRP (1 eNodeB) still has a high median localization error
of 80.0m, which shows the advantage of our binning-based
technique when only 1 BS is available.

Figure 7 shows results from experiments in AreaHi but
using channel measurements from multiple BSes. 5G-Angle-
Binning (3 5G BSes) and 5G-Angle-Binning (9 5G BSes) use
angle measurements from three neighboring 5G BSes or all
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nine 5G BSes in AreaHi to construct the fingerprint. LTE-
RSRP (3 eNodeBs) considers RSRP measurements from all
three eNodeBs present in AreaHi.

In Figure 7, the median (mean) localization errors of LTE-
RSRP (3 eNodeBs), 5G-Angle-Binning (9 5G BSes) and then
by 5G-Angle-Binning (3 5G BSes) are 2.0m (2.4m), 3.7m
(5.3m) and 4.4m (7.7m) respectively. While all techniques
achieve low localization errors comparable to our grid di-
mensions of 5m × 5m, LTE-RSRP achieves better results
than 5G-Angle-Binning in this experiment. One explanation
is that the RSRP measurements are more stable than angle
measurements, which are affected more easily by the chang-
ing environment. Multiple angle measurements at short time
intervals may help improve the robustness of binning-based
fingerprinting.

Next, we compare the performance of localization schemes
using multiple BSes against the previous experiment using 1
BS only. Comparing Figure 7 with Figure 6, we find that
both LTE-RSRP (3 eNodeBs) and 5G-Angle-Binning (3 5G
BSes) substantially improve their accuracy over LTE-RSRP
(1 eNodeB) and 5G-Angle-Binning (1 5G BS) respectively.
Thus, both schemes benefit from a trilateration-like effect as
they consider measurements from three base stations. While
5G-Angle-Binning performs better with 1 BS, LTE-RSRP
performs better with multiple BSes. Based on this result, it
may be useful to explore a hybrid of angle-based and RSRP-
based localization based on the density of BS deployments.

V. CONCLUSIONS AND FUTURE WORK

We explored the use of angle-based measurements for UE
localization in 5G. Our binning-based fingerprinting technique
used angle measurements and received power from the serv-
ing base station as well as neighboring base stations across
multiple paths. Using experiments for a major city and BS
locations of a tier-1 carrier in the US, we showed that (1)
our 5G binning-based localization using angle measurements
from 1 5G BS outperforms LTE localization technique using
RSRP measurements from 1 eNodeB in both lower density
and higher density areas; (2) multiple base stations improve
the accuracy of both LTE RSRP-based and our 5G binning-
based localization because of a trilateration-like effect, which
results in comparable accuracy of the two techniques.

The accuracy of angle-based localization could be improved,
especially in dense urban environments by collecting and
using multiple measurements at short time intervals for mobile
UEs, and further by exploring a hybrid of RSRP-based and
angle-based techniques. A longer-term challenge is to build
a system for angle-based localization in 5G. To that end,
first, we have to extend software such as MobileInsight [10]
with techniques to collect angle measurements at UEs. Next,
the azimuth and zenith angles are measured relative to the
direction of the UE’s antenna array, which depends on UE’s
orientation. Sensors embedded on a UE (e.g., gyroscope)
can help with derivation of absolute azimuth/zenith angles
in the global coordinate system. Finally, we need to quantify
trade-off between location accuracy and the volume of data

collected so that a localization service to collect and analyze
measurements can scale of billions of 5G devices.
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