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Abstract

The Internet’s tremendous success as well as our maturing
realization of its architectural shortcomings have attracted
significant research attention towards clean-slate re-designs
in recent times. A number of these shortcomings can be
traced back to naming. The current Internet uses IP addresses
to conflate identity and network location, which results in
poor support for mobility and multihoming; vulnerability
to hijacking and spoofing of addresses, etc. The Internet’s
name resolution infrastructure deeply embeds in its design the
assumption of mostly stationary hosts and poorly satisfies the
performance, security, and functionality demanded by modern
mobile services.

As a step towards addressing these shortcomings, we present
the design of a global name service that forms a central
component of the MobilityFirst, a clean-slate Internet archi-
tecture with mobility and trustworthiness as principal design
goals. MobilityFirst relies on the global name service to
cleanly separate identity from network location and to resolve
identifiers to locations in a secure manner. More importantly,
MobilityFirst capitalizes on the role of the name resolution
infrastructure as a logically central, first point of contact to sig-
nificantly enhance a number of network-layer functions such
as supporting host and network mobility, multi-homed traffic
engineering, content retrieval, multicast, and next-generation
context-aware services. This paper identifies key challenges
that must be addressed to realize such a vision and outlines
the design of a distributed global name service that can resolve
identifiers to dynamic attributes in a fast, consistent, and cost-
effective manner at Internet scales.

I. INTRODUCTION

The Internet’s tremendous success and our maturing real-
ization of its shortcomings have attracted significant research
attention towards a clean-slate redesign of the Internet’s archi-
tecture (e.g., NSF FIND [32], GENI[20], FIA[31]). A number
of the shortcomings of the current Internet can be traced
back to issues related to naming, a central component of
any distributed system design. In the current Internet, network
entities are identified using IP addresses and the Domain Name
System (DNS) resolves human-readable end-host names to IP
addresses. Although this design has proven to be surprisingly
malleable, it suffers from two sets of fundamental problems,

both of which are exacerbated by the the exponential growth
of mobile devices and applications today.

The first results from the conflation of identity and location
within an IP address, a design decision roundly criticized
by many [10], [39], [23], [12], [8]. Using an IP address to
identify a network interface as well as the network location
of that interface complicates mobility—when the location
changes but not the identity—and multihoming—when a single
identity simultaneously resides at multiple locations—e.g.,
being simultaneously connected to a cellular and WiFi access
network. With roughly 5 billion mobile devices worldwide
today [19] (over a billion of which are IP-capable) compared
to barely a billion tethered hosts [11], mobility and multihom-
ing are the norm, not an exception. Conflating identity and
location also poses a serious but less widely acknowledged
security challenge, namely, verifying that an interface indeed
has the identity it claims. Unlike human-readable names that
are bound to public keys by trusted certification authorities
in order to enable application-level authentication today, IP
addresses are harder to certify, especially when they change
many times a day. As a result, we largely make do today with
application-level security over a network that can be easily
rendered unavailable by spoofing or hijacking of IP addresses.

The second results from the architecture of DNS, a critical
part of the Internet’s infrastructure. The design of DNS in
the Internet’s early days implicitly assumed tethered hosts or
infrequently changing addresses to be the common case, an as-
sumption evident in its heavy reliance on caching and timeout-
based invalidations for scalability. An inevitable consequence
of this design is that unanticipated updates to DNS resource
records are slow; more than 40% domain names have a TTL
of a day or more [38]. Even for slow-changing records, DNS
lookup times constitute a significant fraction of user-perceived
response times, e.g., over 30% of web objects incur a DNS
lookup latency of over a second [24], [22]. Deploying more
passive local name sever caches can reduce lookup latencies,
but this benefit comes at the cost of further increasing update
propagation delays or update load in the system. These and
other problems with DNS such as poor load balance and
responsiveness to changing demand patterns, vulnerability to
denial-of-service attacks, etc. have been well documented in
prior research [35], [38], [9], [15].

In this paper, we present the design of a global name
service that seeks to address the above problems. This global
name service is a central component of MobilityFirst, a clean-978-1-4673-5494-3/13/$31.00 c© 2013 IEEE



slate Internet architecture that is centered around mobility and
security as principal design goals. MobilityFirst relies on the
global name service to cleanly separate identity and location
and to resolve identities to locations in a verifiable manner.
Unlike IP addresses, all identities are represented using flat,
self-certifying identifiers, a representation that on one hand
does not allow encoding of any location information, and on
the other, enables authentication at the network layer via a
simple, bilateral procedure.

Our position is that a global name service can and should
go beyond identity-to-location resolution and aggressively
capitalize on its role as a logically central, first point of
contact for most network operations. Accordingly, we describe
how a logically centralized but physically distributed global
name service can significantly enhance and simplifiy a number
of network-layer functions such as seamless host, network,
or service mobility, multi-homed traffic engineering, content
retrieval, multicast, context-aware services, etc.

A critical distributed systems challenge in realizing such
a global name service that supports mobility at scale is the
design and implementation of a resolution infrastructure that
quickly resolves identifiers to their attributes. To appreciate
the scale, consider 10 billion identifiers (for mobile devices,
services, content identifiers, or entire networks such as vehic-
ular networks) moving across a 100 network addresses per
day, i.e., a load of a million/sec for updates to the network
location attribute alone. Furthermore, the name service should
process lookup queries quickly, requiring queries to be directed
to a nearby replica that holds a consistent replica of the
corresponding resource records. Finally, the service should
balance the aggregate load across all names and geographically
distributed locations of the global name service.

Our proposed design for achieving all of the goals above—
low latency, low update cost, and load balance—is a re-
solver placement engine, Auspice, that automates replication
and geo-distributed placement of resolvers for identifiers. To
ensure low response times, Auspice dynamically spawns or
migrates resolver replicas close to pockets of high demand.
To limit update cost, Auspice controls the number of replicas
based on write rates.To ensure load balance, Auspice’s redi-
rects client requests taking into account both network latency
and nameserver load into account.

a) Roadmap: The rest of this paper is organized as
follows. Section II presents the naming subsystem in the
MobilityFirst Internet architecture. Section III presents the
design goals and challenges of an automated replica placement
system, Auspice, for geo-distributed name resolution. Section
IV describes related work and Section V concludes.

II. NAMING IN MOBILITYFIRST

In this section, we overview the MobilityFirst architecture
with a particular emphasis on how a logically centralized
global name service helps achieve a number of network-layer
functions in a simple, efficient, and secure manner.

A. Identity and addressing

A name in MobilityFirst is a globally unique identifier
(GUID) that can be used to identify a variety of principals
such as an interface, a device, a service, a human end-user,
content, or (recursively) a collection of GUIDs.

Self-certifying identifiers: A GUID is self-certifying, i.e.,
any principal can authenticate another principal claiming a
GUID without the need for third-party certification. A self-
certifying GUID is derived simply as a one-way hash of a
public key, so a GUID can be authenticated using a simple,
bilateral challenge-response procedure that does not require an
external certification authority.

The bilateral challenge-response works as follows. Suppose
a principal X (say, a router) wants to authenticate another
principal Y (say, a destination), i.e., X wants to verify that Y
is indeed the rightful owner of the GUID Y . Then, X issues
a challenge by sending a random, one-time nonce n to Y . Y
responds to the challenge with the tuple [K+,K−(n)], where
K+ is a public key and K−(n) is the nonce encrypted using
the corresponding private key. Upon receiving the response, X
first checks that H(K+) = Y , where H(.) is a well-known
one-way hash function, and then checks that K+(K−(n)) =
n. If both checks pass, then X has authenticated Y .

Human-readable names: Self-certifying identifiers do not
completely obviate certification authorities. In addition to a
GUID, it is convenient to assign a principal an optional human-
readable name (e.g., “www.amazon.com” or “Tom Sawyer’s
cell phone”) or an inexact intent (e.g., a set of search key-
words or other abstract descriptions). In such cases, name
certification services bind the human-readable name or intent
to a public key, and end-users or applications must first obtain
such a certificate from a name certification service they trust
in order to securely communicate with each other.

Network addresses: A network address (NA) is a self-
certifying identifier for a network, i.e., an autonomous col-
lection of interconnected devices that act as intermediate
forwarders of traffic sourced by or destined to GUIDs attached
to any device in the collection. An NA most naturally corre-
sponds to an autonomous domain (AS) in today’s parlance, but
could also be used to identify finer-grained collections such
as a subnet or one or more base stations or coarser-grained
collections such as an Internet Service Provider. A GUID is
said to be attached to an NA if it is directly connected to one
or more forwarding devices in the NA.

B. Routing

The tuple [GUID, NA] is a routable destination identifier
carried in packet headers. Senders query the name service to
obtain the NA corresponding to a GUID (much like they query
DNS to obtain the current IP address corresponding to a do-
main name) before sending the first packet to the destination.
Senders are also permitted to send a packet addressed just to
a GUID, thereby implicitly delegating to the first-hop router
the task of querying the name service for the corresponding
NA.



End-to-end packet forwarding is accomplished in two steps,
first by an interdomain routing protocol and then by an in-
tradomain routing protocol. The interdomain routing protocol
is responsible for delivering packets to the destination NA
in the packet header (oblivious of the destination GUID).
Once the packet reaches the destination NA, routers in NA
are responsible for delivering the packet to the GUID in the
packet header. As in today’s Internet, all NAs engage in a
single interdomain routing protocol, but each NA indepen-
dently chooses its intradomain routing protocol. As GUIDs
can not encode any information about network location, the
intradomain routing protocol must be capable of routing on flat
identifiers, similar in spirit to a switched Ethernet that routes
over MAC addresses.

1) Scaling interdomain routing: The interdomain routing
protocol enables reachability to NAs much like the current
Internet enables reachability to IP prefixes. Thus, the number
of forwarding table entries in a core router is commensurate to
the total number of NAs. As the number of NAs may grow sig-
nificantly over time (e.g., home networks, vehicular networks,
body area networks, etc.), the interdomain routing protocol is
designed to support a small number of levels of hierarchy so as
to trade off packet header space against forwarding table size.
Our current interdomain routing protocol design supports a
two-level hierarchy wherein networks are explicitly designated
as core or edge networks.

A core network router only maintains forwarding entries for
other core networks and a small number of their “customer”
edge networks. An edge network router maintain forwarding
entries only for a small number of their “provider” core
networks and edge networks in their vicinity. The name
service enables the two-level interdomain routing protocol by
resolving a GUID to a two-tuple [X, T ] (instead of a single
NA), where X is the most downstream core network enroute
to GUID and T is the terminal network to which the GUID is
attached. An edge network need not be directly connected to
a core network, however, it must ensure that at least one core
network agrees to maintain forwarding state for it.

2) Network mobility: The explicit designation of networks
as core or edge differs from the current Internet’s implicit
partitioning of autonomous systems into a hierarchy of tiers.
AS tiers in the current Internet are not explicitly recognized
by the interdomain routing protocol, BGP, (or even acknowl-
edged publicly by the ASes) and are useful only as means
of exposition of the economic relationships between ASes.
In MobilityFirst however, the explicit hierarchy also helps
reduce global routing traffic under network mobility wherein
a network as a whole moves across locations, e.g., when
vehicular or body-area networks physically move and connect
to different access networks.

To enable low-overhead network mobility, each edge net-
work T is responsible for maintaining an entry [T,X] in
the global name service. Each GUID u attached to T only
maintains the entry [u, T ] in the name service. Upon a lookup
request for u, the name service checks whether the corre-
sponding network T obtains service from a core network X

and, if so, returns the tuple [X, T ]. If T moves within the
service area of X , then no updates to the name service are
necessary. If T moves from the service area of X to that of
another core network Y , then only the mapping [T,X] in the
name service needs to be updated to [T, Y ]. No updates for
individual GUIDs attached to T are necessary.

Network mobility also induces routing update traffic in
addition to updates to the name service. When T moves
within X (or from X to Y ), routers in the service area of
X (and Y ) have to accordingly update their forwarding table
entries. However, routers in all other core networks do not
incur any routing traffic because of an edge network’s mobility.
In contrast, in the current Internet’s interdomain protocol, the
movement of an AS or IP prefix can induce routing updates
to most or all other routers in the Internet.

3) Multihoming and multipath routing: A multi-homed
GUID is simultaneously attached to more than one core or
terminal network. In these cases, the name service by default
returns a list of all homes {[X1, T1], [X2, T2], . . .} to which the
GUID is attached. Multi-homed GUIDs can specify expressive
policies for engineering incoming traffic, e.g., prefer WiFi to
3G; or use WiFi for delay-tolerant downloads and 3G for
delay-sensitive traffic, and so on. For multi-homed networks,
network operators can explicitly create NAs for portions of
their network and specify incoming traffic engineering policies
in a similar manner. In contrast, the identity-location conflation
in the current Internet forces operators to resort to tactics
such as abusing longest-prefix matching in order to accomplish
traffic engineering objectives.

The name service also enables multipath routing for multi-
homed end-hosts. If a source and destination are homed
respectively with k and m homes, then a total of km different
routes are potentially available for communication between
the source and destination. End-host GUIDs typically specify
a default or preferred home in their resource records in the
name service for initiating communication. Subsequently, the
source and destination can negotiate and use one or more of
the other routes as desired.

Compared to the current Internet, the name service in
MobilityFirst enables a limited form of user-controlled routing.
However, end-hosts can leverage path diversity via the name
service only when one of the two endpoints is multi-homed.
The conscious decision to not allow full-fledged source routing
is motivated by two factors. First, source routing raises security
concerns as it is vulnerable to abuse by end-hosts. It is also
unclear what incentive a network has to enable end-hosts
that are not its direct subscribers to control routes (and by
consequence resource allocation) within its network. Second,
as in the current Internet, we expect much of the useful path
diversity to result from differences in path quality close to the
edge (e.g., WiFi vs. cellular vs. wired providers) because of
multihoming.

4) Content retrieval: Static content in MobilityFirst is
also named using a self-certifying identifier, but a content
GUID is simply the hash of the content itself. This widely
used technique [13] obviates the need for public keys for



verifying the authenticity of static content. Given a content
GUID, the name service returns a list of network addresses
{[X1, T1], [X2, T2], . . .} from where replicas of a content may
be fetched. The list of these locations typically only includes
replicas maintained by content providers or their delegates
(e.g., content distribution networks), not all locations storing
a cached copy of the content. The client may also request the
name service to only return the replica location(s) closest to
it, in which case only one or two locations may be returned.

Opportunistic caching and retrieval of static content is
enabled by storage-aware routers without explicitly relying
on the name service. A network intermediary can intercept
a content GUID request and serve the content if it possesses a
cached copy. A service identifier field in packet headers allows
routers to infer that a GUID is a content identifier as opposed
to a self-certifying identifier for other principals. Opportunistic
caching alone does not enable routers to leverage wayside
copies that are nearby but not directly on the path of a content
request packet. We are currently investigating techniques to
support efficient discovery of nearby but off-path copies of
cached content in intradomain routing protocols.

5) Indirection and grouping: Two powerful operations—
indirection and grouping—enable the name service to support
a number of new network primitives. Indirection enables
the name service to resolve a GUID to another GUID and
grouping allow a set of GUIDs to be a assigned a single GUID.
We illustrate these benefits using three examples below.

Multicast: A multicast GUID (MGUID) has the same
format as a regular GUID and the resolved output of the
name service has the same format as multi-homed network
address. However, the resolution procedure and routing are
different as follows. The name service maintains a membership
set for each MGUID that consists of all GUIDs subscribed
to the multicast group. Each member GUID i in MGUID
subscribes to the group via a single home, NAi. The name
service resolves an MGUID by returning the union of all NAi’s
that have at least one GUID subscribed to the MGUID. By
default, the sender is responsible for sending data addressed
to [MGUID, NAi] for each of the returned NAi’s. When packets
arrive at a destination NAi, the NAi is responsible for resolving
the MGUID to the subset of member GUIDs attached to its
network and forwarding a copy to each member.

Geo-casting, e.g., sending a message to all taxis near Times
Square, and other context-aware services can be supported in
a similar manner by having the name service maintain geolo-
cation or context attributes in addition to network locations of
GUIDs. A number of other context-aware multicast scenarios
can be implemented in a similar manner by creating an
MGUID for GUIDs satisfying the desired context attribute and
resolving the MGUID at transmission time to the constituent
destination networks.

Content directories: Content is typically organized in
hierarchical name spaces, e.g., www.nytimes.com/sports,
www.nytimes.com/business, and so on, to enable grouping
and colocation of related content. However, as GUIDs do
not capture locality, moving the location of a large content

directory from one network domain to another will by default
result in updates to all of the constituent content GUIDs. To
reduce this overhead, a set of content GUIDs can be assigned
a content directory GUID. In this case, the name service
maintains network addresses only for the directory GUID and
returns it upon a request for any constituent content GUID.

Group mobility: Indirection and grouping help reduce the
overhead of updating the name service when nodes move as
a group. Note that the name service needs to be updated
with network locations of nodes even if they are not actually
sending or receiving any data. Affinity groups, similar in spirit
to content directories, help reduce the overhead of maintaining
network locations for any group of GUIDs with similar
mobility patterns, e.g., a group of interfaces in an airplane.
Thus, any group of co-mobile GUIDs can be assigned a single
group GUID that requires only one update for the entire group
every time the network location of the group changes.

Affinity group mobility resembles edge network mobility
(Section II-B2) as they both help reduce the overhead of
updating the name service when principals move as a group.
We have distinguished between a group GUID and an NA
because of the difference in their roles: members of a group
GUID do not act as intermediate forwarders of traffic unlike
members of an NA. However, the distinction blurs in the case
of ad hoc networks when a group GUID also acts as a network.
In such cases, the same group may be assigned a group GUID
as well as an NA; routers maintain forwarding state for the
latter but not the former.

C. Access control

The name service stores a flexible set of attributes for
each self-certifying identifier such as the network address,
geolocation, multihoming preferences, group membership in-
formation, etc. Principals can further create other attributes as
needed to implement new context-aware network services. As
some of these attributes may contain sensitive information, it
is critical to support access control mechanisms that enable
the principal to specify who can read or modify them.

The name service stores data as a key-value store and
a principal’s self-certifying identifier (GUID or NA) is the
primary row key. The data model is a supercolumn family
similar to that used by so-called noSQL stores [5]. Each
row can have a variable number of attributes, e.g., “type”,
“network-addresses”, “geolocation”, etc. For each row-column
pair and type of operation (read or write), the name service can
maintain an access control policy. The access control policy
is specified in the form of a blacklist or whitelist of GUIDs
that are allowed to perform the corresponding operation on
that attribute. As GUIDs are hashes of public keys, the name
service can easily authenticate a principal to verify that it
conforms to the blacklist or whitelist. By default, the principal
with the primary row key as its GUID has read and write
access to all of its attributes.



III. AUSPICE: A GLOBAL NAME RESOLUTION SYSTEM

A key distributed systems challenge in realizing a global
name service that achieves the goals described above is the
design and implementation of a scalable resolution infrastruc-
ture to rapidly resolve identifiers to attributes. In this section,
we describe the design requirements and the high-level design
of Auspice, a system that automates geo-distributed placement
of resolver replicas in a locality and load-aware manner.

A. Overview

MobilityFirst’s heavy reliance on the name service to assist
network-layer functionality is practical only if querying the
name service itself is not perceived as a big overhead. We
envision a massively distributed name resolution service that
enables any node—an end-host or a router—to obtain a
response in a fast and consistent manner. To achieve this
goal, it is clearly necessary to deploy name servers at a large
number of geo-distributed locations. However, the challenge
is to ensure that most requests find a consistent replica of the
resource record they seek at a nearby name server location
despite frequent updates to the record because of mobility.

We argue that a DNS-like design is poorly suited to address-
ing this challenge for several reasons. DNS heavily relies on
long TTLs both to reduce client-perceived latency and load on
the infrastructure, so reducing TTLs will hurt both. However,
frequent node mobility implies that TTLs ought to be set
to near-zero values in order to ensure consistent responses.
Worse, in practice, operators today often ignore TTLs and
cache responses for longer than the specified limit, which fur-
ther exacerbates update propagation times. Finally, sustaining
low TTLs for frequent mobility requires authoritative name
servers to be sufficiently provisioned and geo-replicated in
order to keep lookup latencies low, thereby increasing the cost
of maintaining them for end-users and online services.

Auspice automates geo-replicated placement of name re-
solvers and supports it as an infrastructure service. A resolver
in Auspice is associated with a single identifier (a GUID) and
is responsible for maintaining the identifier’s attributes and
performing user-request read or write operations. Resolvers
for different identifiers are largely independent of each other.
For example, the resolver for a popular identifier may be
replicated at a hundred different locations while those for an
infrequently queried identifier may be replicated at a much
smaller number of locations. Different identifiers may also
have different consistency, availability, or fault-tolerance re-
quirements. Our position is that supporting automated resolver
replica placement as an infrastructure service obviates manual
and redundant effort on part of authoritative name service
providers, enables them to benefit from economies of scale,
and allows the infrastructure service to manage its global
resources in an efficient and agile manner.

B. Design goals and challenges

An automated resolver replica placement system must sat-
isfy the following design goals.

1) Low response time: Replicas of each resolver should be
placed close to its end-users so as to minimize user-
perceived response times.

2) Low update cost: The number of replicas of each re-
solver should be controlled so as to limit the update
cost required to maintain replica consistency.

3) Load balance: The placement of resolver replicas and
redirection of client requests should ensure that no single
name server location becomes a hotspot.

4) Fault-tolerance: A sufficient number of active or dor-
mant replicas of each resolver must be maintained so as
to satisfy its availability objective.

5) Consistency: The system must achieve the above objec-
tives while respecting the consistency requirements of
each resolver.

Although each of the above goals is straightforward and
shared by a number of other distributed systems, satisfying
the combination of goals is challenging. To appreciate why,
consider a few strawman alternatives:

(1) Replicate everything everywhere: This scheme can mini-
mize response times but can induce a prohibitively high update
cost as well as load imbalance.

(2) Primary replica(s) plus edge caching: This scheme
maintains one (or a small number of) primary resolver
replica(s) and a large number secondary replicas to which
updates are pushed out infrequently. This approach can reduce
update bandwidth cost by reusing stale, cached copies of re-
source records, however consistency requirements may prevent
or severely limit these cost savings. Even for services with
weak consistency requirements, the placement system needs to
balance the trade-off between response times and load balance.

(2) Consistent hashing with replication: This approach (e.g.,
[25]) can ensure load balance and fault-tolerance but may incur
high response times as the load balance benefits of random-
ization are fundamentally at odds with placing replicas in a
locality-aware manner [38], [14], [37]. Significantly increasing
the number of replicas can improve response times but also
increase update cost under high mobility.

In accordance with our design goals, Auspice explicitly
determines the number and placement of resolver replicas for
an identifier taking into account its query and update rates and
the geographic locality of queries, and redirects client requests
taking into account the aggregate load at each name server. We
describe this design in detail below.
C. Auspice design

Figure 1 illustrates the architecture of Auspice. Each identi-
fier is associated with a fixed number, k, of replica-controllers
and a variable number of active replicas of the corresponding
resolver. The locations of the replica-controllers is fixed and
computed using k well-known consistent hash functions each
of which maps the identifier to a name server location. The
replica-controllers form the “control plane” and are responsi-
ble only for determining the number and locations of active
replicas, and the active replicas are responsible for maintaining
resource records and responding to requests from end-users.



Fig. 1. Overview of Auspice. Clients send typical requests to nearby active
replicas of resolvers. Replica-controllers compute the number and locations
of active replicas for each name based on load reports in each epoch.

The computation of the active replica locations for each
identifier proceeds in epochs as follows. At bootstrap time,
the active replicas are chosen to be physically at the same
locations as the corresponding replica-controllers. In each
epoch, the replica-controllers obtain from each active replica
a summarized load report that contains the request rates for
that identifier from different regions as seen by that replica.
Regions could either be terminal networks or geographic
regions that partition users into non-overlapping groups so as
to capture locality. Thus, each replica’s load report consists
of a spatial vector of request rates as seen by that replica.
The replica-controllers aggregate these load reports to obtain
a concise spatial distribution of all requests for the identifier

In each epoch, the replica-controllers use a mapping al-
gorithm that takes as input the aggregated load reports and
capacity constrains at name server locations to determine the
number and locations of active replicas for each identifier. The
replica-controllers execute Paxos to compute the placement
decision in a coordinated manner for each identifier. During
periods of graceful execution, only one replica-controller (the
Paxos coordinator) actually invokes the mapping algorithm
while the others simply accept its proposed placement; consen-
sus ensures that the replica-controllers maintain a consistent
view of the current set of active replicas despite failures.

1) Mapping algorithm: Our preliminary analysis suggests
that the mapping problem can be formulated as a mixed-
integer optimization problem that is computationally hard. We
have also developed simple heuristic placement algorithms
that are computationally efficient. A heuristic algorithm that
appears promising in our ongoing evaluation is one that creates
a number of active replicas proportional to the ratio of the
read rate and write rate for the identifier; places some replicas
at the locations that receive the highest number of requests
for that identifier and places the rest at random locations;
and redirects client requests to active replicas taking both
round-trip network latency and name server load into account.
Our preliminary evaluation suggests that this simple locality-
and load-aware replication scheme significantly outperforms
simplistic approaches such as “random-k” or DHT-based ap-

proaches that do not take locality into account [37]. A detailed
description of these schemes and an experimental evaluation
comparing these schemes as well as closely related state-
of-the-art systems is out of the scope of this architectural
overview paper and will appear in a future paper.

2) Routing client requests: The list of all name server
locations (i.e., the corresponding [GUID, NA] tuples) is well
known and can be obtained by contacting any name server.
End-hosts can either directly send requests to the name service
or channel them through a local name server like today. When
a client encounters a request for a GUID for the first time,
it uses the well known set of all name servers and hash
functions to determine the replica-controllers for that GUID
and sends the request to the closest replica-controller. The
replica-controller then returns the set of active replicas for
the GUID and the client resends the request to the closest
active replica. In practice, we expect replica-controllers to be
contacted infrequently as clients can cache and reuse the set
of active replicas for subsequent queries.

Clients can also cache and reuse responses if they contain
a nonzero TTL, however frequent mobility or consistency
requirements may limit the opportunities for such caching.
For services whose locations do not change frequently, longer
TTLs can reduce name server load and lookup latency, but
correspondingly increase service outage time when the service
does move. But the explicit separation of identity and location
in MobilityFirst helps alleviate this problem. When a GUID
disconnects from an NA, it either directly or through the name
service (if it disconnects ungracefully) notifies the NA that its
routers should remove forwarding table entries for the GUID.
If a router in NA subsequently receives a packet destined
to [GUID, NA], it responds to the sender with a “refresh
resource record” message prompting the sender to query the
name service again.

3) Consistency: The name service by default ensures se-
quential consistency for each resolver service by establishing
a total order across all writes to attributes keyed by a single
GUID. This is achieved efficiently through Paxos (unrelated to
Paxos between primaries for placement decisions as in Section
III-C) between active replicas upon a write. When an active
replica receives a write to any GUID attribute, it forwards
the write to an active replica designated as the current Paxos
coordinator. The coordinator selects a sequence number and
sends an accept request to all replicas and, upon receiving a
successful acknowledgment from a majority of replicas, sends
a commit notification to all replicas. Thus, a typical write
request incurs four network delays (or two round-trips) to get
committed after arriving at an active replica. A read request is
processed locally at a replica sees the result of the most recent
committed write at that replica.

A total ordering of writes at all replicas is insufficient to
ensure a desirable client-perceived consistency property in
single-writer scenarios, namely that replicas will eventually
return the most current (in real time) network address(es) of
a mobile device (the only writer) if no further updates take
place, e.g., a mobile may issue update w2 after update w1



but it is theoretically possible for the system to commit w1

after w2. Ensuring the above property in single-write scenarios
requires clients to either issue updates sequentially; or issue
multiple outstanding writes through the same active replica;
or be responsible for reissuing writes if multiple outstanding
writes issued through different replicas get committed in an
unacceptable order.

The name service as described above does not guaran-
tee atomicity, isolation, or sequential ordering for operations
spanning multiple GUID keys as each resolver is responsible
for a single GUID and there is no coordination between
resolvers for different GUIDs. For example, in operations
involving addition/deletion of a GUID X to/from a group
GUID Y , the system may briefly see X as being redirected
to Y but Y ’s membership set not including X or vice-versa.
The system may also permanently be in such an inconsistent
state if multiple writers concurrently perform multi-GUID
operations. Not supporting multi-key transactions is a common
design choice in the interest of availability, performance and
simplicity made by distributed key-value stores.

4) Mid-session mobility: The design described so far has
focused on using geo-replication to enable low lookup laten-
cies at connection initiation time. However, ensuring graceful
mobility during a connection’s lifetime requires further support
for notifying the corresponding endpoints or routers. A well-
known approach today to handle mobility both at connection
initiation time as well as mid-session is to rely on a home
agent [36]; this approach is elegant in that the correspondent
remains oblivious to other end-point’s mobility, however this
elegance comes at the cost of routing inefficiency and the cost
of tunneling all data traffic through the home agent.

Auspice places a greater onus on end-points to handle
mid-session mobility and only provides a simple mechanism
for a mobile node to push invalidating updates to the other
endpoint of an ongoing connection when its current address
becomes invalid. The mechanism works as follows. Consider
a connection between two endpoints with GUIDs A and
B where the corresponding sockets are currently bound to
addresses NA1

A and NA1
B . If B wishes to migrate its end of

the connection to NA2
B because of mobility or other reasons, it

issues a corresponding invalidating update through the name
service to A, prompting A to rebind its socket accordingly.
As a common case optimization, it suffices for B to directly
issue the invalidating update ‘in-band” to A, however the push
mechanism via the name service is required to handle the cor-
ner case when both endpoints happen to move simultaneously.

The main justification for the above design is that it can
achieve low enough connection outage times comparable to
a home agent approach when nodes suddenly move mid-
session, but without incurring the overhead of triangle routing
or tunneling data traffic. We also note that the network-layer
support for “refresh resource record” in §III-C2 may also
suffice as a notification to the sender, but the above proactive
“in-band” scheme above is likely to be more responsive and
can also be used when an endpoint wishes to migrate a
connection for reasons other than mobility, e.g., from the

cellular to WiFi interface. These arguments for using in-band
communication for non-simultaneous mobility of endpoints
are similar in spirit to several past proposals for session-level
[23], [16] or connection-level [7], [30], [43], [18] migration.

IV. RELATED WORK

In this paper, we presented a global name service as a
central component of a mobility-centric, secure Internetwork.
Our work builds upon an enormous body of prior research that
has studied naming, server selection, and placement issues in
large-scale distributed systems, as discussed below.

Naming: Classic works on name services [40], [33], [28]
for distributed resource discovery have influenced a number of
more recent works such as the Intentional Naming System[1]
and Active Names[44]. INS[1] proposes a naming system that
is also in large part motivated by mobility but has several
orthogonal goals. INS allows clients to specify their intention
as opposed to a unique name in a simple, high-level language,
and the resolution overlay network is tightly integrated with
routing, thereby enabling late-binding of intentions to match-
ing destinations. Unlike INS that emphasizes expressiveness
of names but not security, our focus is on resolving unique
but verifiable identifiers. Furthermore, replication and locality-
aware placement of resolvers or wide-area environments are
not targeted by INS. Active Names allows applications to
deploy mobile code at resolvers that can recursively invoke
other programs for finer-grained, hierarchical resolution and
compose the output of resolved services. In contrast, our
proposed approach does not rely on mobile code and does not
attempt to support service composition, but does supports the
resolution of identifiers to other identifiers (e.g., for multicast)
before eventual resolution to terminal network locations.

Server selection: A number of prior systems have addressed
the server selection problem where data or services are repli-
cated across a wide-area network. OASIS [17] maps users
based on IP addresses to the best server based on latency
and server load. DONAR [46] enables an expressive API for
content providers to specify performance or cost optimization
objectives while meeting load balancing constraints. These
systems as well as commercial CDNs and cloud hosting
providers [3] share our goals of proximate server selection
and load balance given a fixed placement of server replicas.
In comparison, our approach additionally considers replica
placement itself as a degree of freedom in achieving latency
or load balancing objectives.

Placement: Existing systems that dynamically make replica
placement decisions based on observed demand patterns deal
with either static or dynamic content. In general, the latter
present a more complex problem than the former as static
content can be cached easily obviating sophisticated content
placement strategies [26] (noting that static content placement
decisions can have a nontrivial impact on network load or
cost concerns [6], [41], [42]). Replicating dynamic content is
effectively like replicating a service (e.g., the resolver service
described in this paper) and must address the interrelated
concerns of update cost, consistency, and load balance.



Volley [2] optimizes the placement of dynamic data objects
based on the geographic distribution of accesses to the object
and is similar in spirit to Auspice in that respect. However,
Volley implicitly assumes a single replica for each object and
therefore does not have to worry about high update rates or
coordination overhead for replica consistency. Our preliminary
experiments suggest that creating multiple replicas of objects
or resolvers can significantly reduce user-perceived response
times while also enhancing opportunities to balance load
provided update cost is taken into account.

DNS enhancements: Several prior works have studied
issues related to performance, scalability, load balancing, or
denial-of-service vulnerabilities in DNS’s resolution infras-
tructure [35], [38], [9], [15]. Several DHT-based alternatives
have been put forward [38], [14], [37], [34] and we compare
against a representative proposal, Codons [38], in our exper-
imental evaluation (not included in this paper). In general,
DHT-based designs are ideal for balancing load across servers,
but are less well-suited to scenarios with a large number of
service replicas that have to coordinate upon updates, and are
at odds with scenarios requiring locality-aware placement of
replicas. In contrast, our work targets scenarios with poten-
tially high update rates (because of mobility) and seeks to
place replicas of resolvers in a locality-aware manner.

XIA: Like MobilityFirst, the XIA future Internet archi-
tecture [21] also uses self-certifying identifiers and network
locations. Self-certifying identifiers are not new and have been
used in a variety of distributed systems [29], [13] as well as
specifically in the context of Internet architecture [4], [27].
In both XIA and MobilityFirst, a self-certifying identifier can
be used to represent a variety of principals. For evolvability,
XIA represents addresses as a directed acyclic graph of self-
certifying identifiers. Paths in this graph correspond to possible
“source routes” to reach the destination, but not all routers
need be capable of processing every identifier and could
instead fallback to the default address of the form [GUID,
NA]. In comparison, MobilityFirst is designed with more
explicit support for mobility-centric services while keeping
addresses and packet headers simple. Evolvability comes from
the support for indirection and grouping in the global name
service that can resolve a GUID to a set of one or more GUIDs.

Vu et al.[45] describe a network-layer-DHT approach to
map each GUID to a fixed number of resolver locations using
different consistent hash functions wherein clients choose the
closest mapped node to resolve requests. This approach is
similar in spirit to replacing replica-controllers with active
replicas in Section III-C. Our preliminary findings suggest that
selecting the number of replicas based on update rates and their
placement based on demand locality can significantly improve
the performance while keeping update costs low compared to
a “random-K” approach.

V. SUMMARY

In this paper, we presented the design of a global name
service as a central component of MobilityFirst, a mobility-
centric and trustworthy Internet architecture. The name ser-

vice enhances both mobility and security using self-certifying
identifiers that on one hand cleanly separate identity from
network location and on the other can be authenticated by
any network entity without relying on a third-party. A key
challenge we address is the design of the distributed service
to resolve identifiers to a variety of attributes in a scalable,
consistent, and secure manner. To this end, we presented
the design of Auspice, a resolver replica placement system
that optimizes user-perceived latency by placing replicas of
resolvers close to regions of high demand while respecting
capacity and consistency constraints.
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