
EdgeBalance: Model-Based Load Balancing for Network Edge Data Planes

Wei Zhang Abhigyan Sharma⇤ Timothy Wood

The George Washington University ⇤AT&T Labs Research

Abstract

Edge data centers are an appealing place for telecommunica-
tion providers to offer in-network processing such as VPN
services, security monitoring, and 5G. Placing these network
services closer to users can reduce latency and core network
bandwidth, but the deployment of network functions at the
edge poses several important challenges. Edge data centers
have limited resource capacity, yet network functions are re-
source intensive with strict performance requirements. Repli-
cating services at the edge is needed to meet demand, but
balancing the load across multiple servers can be challenging
due to diverse service costs, server and flow heterogeneity,
and dynamic workload conditions. In this paper, we design
and implement a model-based load balancer EdgeBalance for
edge network data planes. EdgeBalance predicts the CPU
demand of incoming traffic and adaptively distributes flows to
servers to keep them evenly balanced. We overcome several
challenges specific to network processing at the edge to im-
prove throughput and latency over static load balancing and
monitoring-based approaches.

1 Introduction

Edge datacenters running network services such as 5G, VPN,
and broadband alongside 3rd party applications requiring low-
latency [20] face many of the issues of a larger centralized
datacenter such as multi-tenancy and workload dynamics.
However, these challenges are worsened due to: (1) a net-
work edge has fewer resources to begin with, and requires
constant adjustment among tenants to meet their time-varying
demands [15]; (2) a network edge runs computationally de-
manding applications and must meet strict throughput and
latency requirements. Network functions (NFs) comprising a
network service stretch performance of CPUs to their limits
to support line rate performance [10], and are often deployed
at the edge in part to reduce latency. Thus many applications
running on the edge are expected to have real-time perfor-
mance requirements, which requires resource allocation to

provide stronger guarantees [23].
Existing work on resource management for network ser-

vices has focused on two distinct parts of the problem. First,
coarse-grained resource management is addressed using algo-
rithms for placement of VMs and containers running network
functions, e.g., E2 [18], and Stratos [8]. Second, fine-grained
load management is achieved through load balancers that dis-
tribute work across service replicas. This can be achieved with
the connection-level load balancers used for cloud servers,
but as we show, such load balancers are not a good fit for the
needs of NFs, especially at the edge.

Connection load balancers can use static or dynamic poli-
cies for dispatching connections. Many of today’s cloud load
balancers, Ananta [19], Maglev [7], adopt simple static poli-
cies. But, more sophisticated policies are needed such as treat-
ing “elephant" flows separately to avoid impacting perfor-
mance for other “mice" flows at the edge. Further, connec-
tion load balancing at the network edge has several unique
constraints compared to prior work on designing dynamic
policies [2, 4, 5, 12, 14, 14]. (1) A connection’s duration or its
bandwidth cannot be estimated at the start. (2) A connection
assigned to an NF cannot be migrated to (or restarted at) a
different server. (3) The CPU use of NFs cannot be measured
by the cloud infrastructure because high-performance NFs
often use polling for network IO and report 100% CPU use
on cores independent of the traffic they are processing [6].
(4) NFs (e.g., NATs) are often middleboxes that transform
outgoing packets, yet affinity must be kept to ensure the re-
turn traffic also passes through the same function. These
constraints necessitate a new load balancing approach.

Our primary contribution is the design, implementation
and a preliminary evaluation of a model-based load balanc-
ing technique for edge network data planes. There are two
components to this solution. First is a model to estimate the
load of a network service on a core as a product of its per-
packet processing cost and the rate of packets processed by
the service on that core. Second is a local feedback-driven
controller (specifically, a Proportional-Integral-Derivative, or
a PID, controller [26]) that adapts load balancing weights if

1



our estimated load on cores becomes unbalanced due to traffic
changes, e.g., an arrival of an elephant flow or surge in traffic
demand of a service. Importantly, neither the model nor the
feedback controller requires load monitoring on NFs and uses
mostly local information to create dynamic policies.

We implement our approach as a DPDK-based stateful load
balancer named EdgeBalance. We evaluate EdgeBalance on
the CloudLab testbed [22] for load balancing network services
implemented in BESS [3]. Our results show that:
• EdgeBalance’s network model can estimate CPU load with

an absolute error of less than 5% for NFs with varying
computation costs and at varying traffic loads.

• In a workload with elephant and mice flows, EdgeBalance
achieves up to 50% higher throughput than the best static
load balancing and achieves up to 1/3-rd the latency of a
monitoring-based approach.

• For a time-varying workload with homogeneous flows,
EdgeBalance achieves an equal load among servers in 1
sec which is several seconds faster than a static policy.

2 Why a new load balancer?

We explain why existing connection load balancers, in partic-
ular cloud load balancers [7, 16, 17, 19], are not sufficient to
meet network edge load balancing needs.

Bidirectional affinity: A critical requirement for a net-
work edge load balancer is to maintain affinity of a connection
to an instance of a network service [19]. In fact, several cloud
load balancers such as Ananta and Maglev provide affinity
despite a changing pool of servers. However, they provide
affinity only for an inbound connection to a server. Traffic
sent by a server on the connection bypasses the load balancer
for efficiency.

Thus while many cloud load balancers are able to perform
optimizations such as bypassing the load balancer on the re-
turn path from a server, a network edge load balancer like
EdgeBalance must ensure bi-directional flow affinity for cor-
rect behavior. Unfortunately, this eliminates the possibility
of applying many existing load balancing frameworks in a
network edge context.

Limitations of static load balancing: Many cloud load
balancers support weighted load balancing across service in-
stances. These weights are used to determine the fraction
of new connections assigned to an instance. But, how these
weights are to be set is often left unspecified [17, 19]. In
practice, cloud operators can use simple static policies, e.g.,
weight of an instance is proportional to number of its cores.
But, simplistic static policies can be highly sub-optimal, espe-
cially for heterogeneous flows, shown in evaluation section.

Challenges in dynamic load balancing: The above exam-
ple shows that dynamic weight tuning is needed, but using
dynamic weights has two main challenges. The first challenge
is that of controller design. Dynamic control can be prone to

oscillations and herd behavior if weights are tuned using stale
traffic measurements or if the controller aggressively adjusts
weights in response to the input [24]. Hence, designing and
evaluating a stable controller for network services that bal-
ances controller responsiveness and stability is an important
question. The second challenge is that of measuring load on
network service instances. Weight adjustments depend on the
current load of services, but high performance NFs are imple-
mented using frameworks such as DPDK that perform polled
network IO. Due to polling, they report 100% CPU utilization
independent of the traffic they are processing. Thus inferring
the load on NFs comprising a network service is the second
important question.

3 EdgeBalance design

EdgeBalance is a dynamic, bidirectional load balancer for a
network edge datacenter. To evenly balance the load across
servers and cores, it adopts a model-based approach to esti-
mate loads and applies a PID controller using local informa-
tion to dispatch connections across network services.

Design goals: EdgeBalance aims to provide
• Bidirectional affinity: Provide affinity for inbound and out-

bound connections for NFs and other cloud applications,
even when NFs modify packet headers.

• Dynamic load balancing: Dynamically equalize the load
on all servers and cores to absorb any unexpected load on a
server core.

• Fast convergence: Respond quickly to load imbalance due
to flow skew, traffic fluctuations, etc..

• High performance: Achieve a high throughput in terms of
packets and connections and add minimal latency.
Architecture overview: EdgeBalance comprises a data

plane forwarder and control plane elements – policy, topology
controller and monitor – shown in Figure 1. Its packet process-
ing path goes through the forwarder, which can be replicated
across multiple threads for scalability. The forwarder must
efficiently redirect incoming packets to an edge server run-
ning the appropriate network service. A thread processes each
packet in a "run to completion" manner by fetching the packet
from a NIC RX queue, choosing a next-hop server, tracking
the connection through a flow table, encapsulating the packet
and delivering the packet into a NIC TX queue. Later, we will
describe how the packet is encapsulated. To avoid contention
between threads, each forwarder maintains its own statistics
about the flows it processes. This data is then periodically ag-
gregated by the monitoring component, which tracks statistics
on a per-service basis. The topology controller tracks which
services are active on which servers and cores and can start
and stop additional replicas. Information from these compo-
nents is fed to the policy component, which guides balancing
decisions made by the forwarders. On every forwarder core, a
garbage cleaner executes periodically to clean up the inactive

2



EdgeBalance

RX Queue Connection
Tracking

Packet
Encap TX Queue

Garbage Cleaner

Monitor
Policy Topology 

Controller

Miss

Control Plane

Data Plane

Forwarder

Figure 1: EdgeBalance architecture

flow entries from its flow table.
Bidirectional affinity: Figure 2 shows the sequence of

nodes traversed by packets in both directions.
Processing at EdgeBalance: When a packet arrives (step

1), a datacenter router sends the incoming traffic from a client
into EdgeBalance. Upon the first packet of a connection, Edge-
Balance records the flow’s 5-tuple of <src IP, dst IP, proto,
src Port, dst Port> and its chosen network service <server
ID, core ID, network service ID> in a flow table entry. Then,
subsequent packets in this flow follow the same path. When a
new flow in one direction arrives, EdgeBalance estimates the
reverse flow information by swapping source IP, destination
IP, source port and destination port. It then inserts a reverse
flow entry with the same <server ID, core ID, network service
ID> as the forward flow. For consistency, garbage cleaner will
remove both of the flow entries from the flow table at the same
time. Then, EdgeBalance encapsulates the chosen network
service information including server ID, core ID, network
service ID, and an update flag (set to 0) into a VXLAN header
with the source mac address of the EdgeBalance server and
destination mac address of the chosen server (step 2).

Processing at edge server: An edge server assists Edge-
Balance in realizing bidirectional affinity. An edge server’s
data plane, called a datapath node, comprises a deparser mod-
ule, a nexthop module and one or more network services
implemented by NFs. The deparser module parses the outer
VXLAN header and gets the core ID and service ID, and then
delivers the packet to right core and network service. If an
NF modifies the packet header, it will set the update flag in
the packet meta data to 1. When nexthop module sees that
the update flag is set, it resends it to EdgeBalance, which
allows EdgeBalance to learn the network service mapping
for the transformed packets (not shown in Figure 2). If no
network service changes the packet header, the nexthop mod-
ule will bypass EdgeBalance and send the packet towards the
destination server (step 3).

Packets from server to client follow a similar procedure as
shown in step 4-6. In particular, EdgeBalance uses the flow
entry learned in steps 1-3 to send the packet to the correct in-
stance of the network service (step 5) to achieve bidirectional
affinity even if a network service modifies packet headers.

Model-based load estimation: The use of polling mode
on datapath nodes makes it hard to measure the real CPU

Client

Edge Cloud

ServerRouter EdgeBalance

Datapath Node Datapath Node

1

2 Encap 5

NF1 NF2 NF3 NF1 NF2 NF3

3
Decap

4

Decap

6

…

Router

Figure 2: EdgeBalance packet path
usage with traditional tools. Even if the datapath node can
report its CPU usage to load balancer, it can easily send stale
or noisy data, since in-network traffic changes rapidly. Edge-
Balance takes another approach. If we know (1) the network
services running on each core, (2) the per packet processing
cost for a network service and (3) the number of packets for
each network service, then we could predict the CPU usage
at the load balancer instead of measuring it at datapath nodes
as described next.

For question (1), the topology controller has the knowledge
of which cores a network service is running on. For question
(2), the processing cost of a network service is affected by
server heterogeneity. When a datapath node starts and network
service services are deployed, datapath internally generates
some UDP packets to go through each network service and
then measures the processing cost and reports the tuple of
<server ID, core id, service id, processing cost> to the monitor
component on EdgeBalance. For question (3), from Figure
2, we can see that EdgeBalance handles every packet going
through a network service. But, it needs to efficiently count
the packet arrival rate for each service on a core. A naive
way would be to aggregate the number of packets by stepping
through the flow table. However, when the number of flows is
huge, the aggregation time will dramatically increase and in-
cur large prediction delay. Instead, since the number of cores
and services are fixed, EdgeBalance maintains a three dimen-
sional array of <server ID, core ID, service ID> to record
the packet counts, which ensures that the CPU load can be
predicted efficiently as follows:

Predict_CPUi j =
n

Â
k=1

(Costi jk ⇤Ratei jk)

Predict_CPUi j is the predicted CPU for <server i, core j>. n
is the total number of network services running on <server i,
core j>. Ratei jk and Costi jk are the packet rate and processing
cost of network service k for <server i, core j>.

Dynamic load balancing via PID controller: EdgeBal-
ance aims to evenly balance the load across servers and cores
running network services. It does so using a PID controller
to update the load balancing weight of each core at fixed in-
tervals. Initally, the system sets an equal weight for all cores.
The target for the controller is to set weights to ensure that
the predicted CPU usage of a core Predict_CPUi j remains

3



equal to the average predicted CPU usage across across all
cores. We apply the PID controller approach to compute the
weight change diff_weight for each core at time intervals
dt as follows:

err = kP * (predict_cpu - avg_predict_cpu) # P-term
err_sum += kI * err * dt # I-term
d_err = kD * (prev_err - err) * dt # D-term
prev_err = err
diff_weight = err + err_sum + d_err # PID output

We set the constants for proportional gain kP = 0.6, in-
tegral gain kI = 0.5 and derivative gain kD = 0.125 using
experimental parameter tuning. In future, we plan to explore
a reinforcement learning approach to set these parameters.

4 Evaluation

Setup: we use six servers on the NSF CloudLab testbed of
"c220g5" type from the Wisconsin site. All of them have
dual Intel(R) Xeon(R) Silver 4114 CPU @ 2.30GHz (2x10
cores), 64KB of L1 cache, 1024KB of L2 cache per core, and
a shared 14080KB L3 cache, an Intel X710 10G Dual Port
NIC and 200GB memory. Every server runs Ubuntu 14.04.1
with kernel 3.13.0-143-generic and uses Intel DPDK v18.02.
We use both Pktgen-DPDK [21] and Cisco Trex [25] as traffic
generators, and BESS [11] as our dataplane platform. We
configure EdgeBalance to adjust weights every 30 ms in this
experiment.

0
10
20
30
40
50
60
70
80
90
100

180 300 700 1400 1850

C
PU

U
sa
ge

(%
)

Processing cost of NF chain (ns)

Measured CPU
Predicted CPU

Figure 3: CPU usage prediction accuracy

CPU prediction accuracy: We first evaluate the accuracy
of our CPU prediction model for NFs with different process-
ing costs. We generate short flows (10 pkts per flow) with
Trex and EdgeBalance sends all traffic to one core which runs
a service chain of two NFs. The first NF rewrites a portion of
each packet’s body and has a fixed cost. The second NF has
a variable amount of computation cost, which we adjust to
observe its impact on overall CPU usage. Figure 3 shows that
the average CPU calculated by the prediction model and the
average measured CPU reported from datapath nodes have
little difference, with an average absolute error of 1.8%. Next,
we consider a more complex scenario with one lightweight
and one heavyweight chain on the same core (not shown due
to space constraints). As we increase the traffic rate while
keeping the NF computation cost fixed, our model retains high
accuracy, only experiencing greater than 5% error when the

CPU usage passes 80% load; at this point, our model tends to
overpredict the CPU needed, which is desirable since it results
in a more conservative system. Next, we investigate if Edge-
Balance is able to apply this model in improving end-user
metrics such as throughput and latency.

Load balancing comparison – heterogeneous flows: For
this experiment, we consider a workload that remains constant
over time but exhibits heterogeneity in flow sizes. Specifically,
a long-running elephant flow is generated by one traffic gener-
ator (Pktgen-DPDK), while a second traffic generator (Trex)
generates mice flows with 10 packets per flow at 1 ms in-
tervals. This workload is served by two datapath nodes of
equal capacity that are running network service chains with
the same processing cost of 700ns per packet.

We compare EdgeBalance against Static WRR, which uses
equal weights for both servers in this experiment. We note
that equal weights are the best static weight setting for this
experiment since CPU capacity and per-packet NF processing
costs are identical for both servers. We also compare against
Monitor – a variant of EdgeBalance that instruments NF code
to monitor cycles spent by an NF in processing packets (vs.
cycles spent in polling an empty NIC queue). It periodically
(every 30 ms) reports CPU utilization as the fraction of cy-
cles spent in processing packets, based on which our PID
controller computes load balancing weights.

Our experiment evaluates the sensitivity of our findings
to the percentage of elephant flow in the workload. We vary
the fraction of traffic from the elephant flow from 7% to
47% keeping the total input traffic (in Mbps) constant. Figure
4a and Figure 4b respectively show the throughput and the
latency achieved by all schemes. To explain the results in these
two figures, Figure 4c shows the average absolute difference
in CPU usage among the two servers for all schemes.

EdgeBalance achieves a nearly constant throughput and
latency, which is independent of the fraction of traffic from
the elephant flow. In Figure 4c, we find that, EdgeBalance
sets the load balancing weights so that the difference in CPU
usage among servers stays below 3%. This finding shows that
EdgeBalance is able to mitigate the effect of the elephant flow
on a server by assigning fewer new flows to that server.

Static WRR sees a reduction in throughput and an increase
in latency upon increasing the fraction of traffic from the
elephant flow. A higher fraction of traffic from the elephant
flow hurts Static WRR’s performance because it increases
the imbalance in load among the two servers. The load differ-
ence increases to 41% for the heaviest elephant flow, due to
which Static WRR has a 33% lower throughput than Edge-
Balance, and a latency of more than 300 us. This experiment
shows that simplistic statics policies do not perform well for
heterogeneous workloads.

Monitor’s throughput is close to EdgeBalance but its la-
tency up to 3 times higher in this experiment. This scheme
achieves a high throughput because on average, the two
servers have a CPU usage difference of at most 7%. This

4



0
200
400
600
800
1000
1200
1400
1600

0 5 10 15 20 25 30 35 40 45 50

Th
ro
ug
hp
ut
(M
bp
s)

Elephant traf�c ratio (%)

Static WRR
Monitor

EdgeBalace

(a) Throughput

0
50
100
150
200
250
300
350
400

0 5 10 15 20 25 30 35 40 45 50

La
te
nc
y
(u
s)

Elephant traf�c ratio (%)

Static WRR
Monitor

EdgeBalace

(b) Latency

0
5
10
15
20
25
30
35
40
45

7.40 14.49 20.97 27.58 33.33 40.00 46.66

Av
g
C
PU

di
ffe
re
nc
e
ac
ro
ss

se
rv
er
s

Elepant traf�c ratio (%)

EdgeBalance
Monitor

Static WRR

(c) Average CPU usage difference

Figure 4: Varying fraction of elephant flow traffic

load difference is higher than that of EdgeBalance but is sig-
nificantly better than that of Static WRR. But, Monitor has
a high latency because it is prone to oscillation of load bal-
ancing weights it assigns to the two servers, partly due to the
noise in measured CPU usage. These oscillations result in
periods where packet queue lengths on NF nodes are higher
than normal, which increases the latency for this scheme. In
comparison, we find that the model-based approach taken by
EdgeBalance results in more stable load balancing weights,
which improves latency. While the oscillations for a monitor-
based approach may be reduced if we increase the monitoring
and weight adjustment interval significantly (say 1 sec), but it
could hurt its responsiveness for dynamic workloads, a sce-
nario we consider next.

We also evaluate how each approach (EdgeBalance, static
WRR, monitor-based approach) behaves when keeping the
traffic ratio from the elephant flow to be constant, but grad-
ually increase the workload intensity for mice and elephant
flows, not shown because of the limited space.

0

20

40

60

80

100

0 10 20 30 40 50 60 70

C
PU

U
sa
ge

(%
)

Time (s)

Static WRR Server 1
Static WRR Server 2

EdgeBalance Server 1
EdgeBalance Server 2

Figure 5: CPU usage for a dynamic workload
Load balancing comparison – dynamic workload: We

consider a time-varying workload and demonstrate how
quickly CPU usage converges upon a workload change. We
begin with one datapath node (server 1) with NF chain pro-
cessing cost 700ns, and send traffic (15 flows/sec) into this
node through the load balancer. If the average CPU usage is
over 95%, the load balancer will mark that datapath node as
overloaded, which requires additional servers to handle the
traffic. At 9 seconds, we double the traffic, causing a new
datapath node to be added into the system. Since Static WRR
dispatches the new flows in a round robin manner, it takes a
much longer time to converge to an equal load, which is about
35 sec. On the other hand, EdgeBalance can predict and be
aware of the load on server 1, it can assign more flows into
the newly added server right after it is added, so the load on
the two servers equalizes in close to a second as shown in
Figure 5. In conclusion, EdgeBalance appears to achieve its

design goals for dynamic workloads as well.

5 Related work

Cloud load balancers: A primary focus of cloud load bal-
ancers implemented in software is to support a scale-out de-
sign [7, 19]. Extending EdgeBalance to support a scale-out
design is an important area of future work. To reduce the
server CPU cores for load balancing, two kinds of approaches
have been considered. First, offload stateful load balancing to
switch ASICs as in SilkRoad [16]. However, these approaches
have limited flow scalability due to limited flow table sizes
on ASICs. Second, use a stateless load balancer but instead
rely on connection state at servers to provide affinity [1, 17].
However, these approaches require extensive support in server
applications.

Load balancing algorithms: Several papers [2, 4, 5] have
used layer-7 information such as URLs or request sizes for
load balancing. But, an edge network load balancer oper-
ates on layer-3/4 information and may not have layer-7 layer
information. Dynamic load balancing based on server load
has been explored by Network Dispatcher [14]. However, a
server’s CPU load is difficult to estimate for polled IO NFs.
Further, their paper does not provide sufficient details to im-
plement its dynamic algorithm. Some papers have proposed
migrating a connection to another server [13] or restarting a
connection on another server [12]. While restarting a flow for
load balancing is not practical for network services, connec-
tion migration may be supported using techniques such as
OpenNF [9]. we plan to explore how connection migration
can enable better load balancing in the context of NFs.

6 Conclusions

We have shown that a stateful load balancer can meet the
bidirectional affinity requirements that are specific to a net-
work edge cloud. Further, we propose a model-based load
balancing approach combines information already present at
a stateful load balancer with a minimal number of parameters
that model the processing cost of network services. Our initial
experience suggests that this model has low prediction error,
it improves performance when dealing with skewed flows and
services with heterogeneous processing costs, and it responds
quickly to changes in workload.

5



7 Discussion

This paper has shown promising preliminary results and the
potential of using PID controller and CPU prediction models
to dynamically distribute flows across network service chains
in an edge environment. We will discuss key challenges for
edge load balancing and look for feedback on our future work,
including:

Edge load balancing: We have argued that the edge envi-
ronment demands a new type of load balancer, particularly
when the edge is being used for network functions. We seek
feedback on what load balancing challenges attendees see as
the most pressing at the edge, such as balancing the complex-
ity of the load balancer’s policies versus the overhead they
incur.

Overhead and cost of state: Despite the trend towards
stateless services, we argue that EdgeBalance needs to track
flow state for flow affinity in case the backend server pool
changes dynamically (addition or removal). We expect the
discussion can focus in part on when stateful load balancers
are required, and how stateful systems can be designed to
achieve high scale.

Prediction robustness: In our preliminary experiments,
we evaluate the accuracy of CPU prediction model by varying
the length of service chains and computation cost on Intel
X86 platform. We plan to evaluate the robustness of the model
by conducting experiments on other hardware platforms with
other common network functions such as NATs, IDSes, and
stateful firewalls.

Cache interference: To efficiently use resources, multiple
NFs can be consolidated on the same server. In such a de-
ployment, NFs contend for resources such as LLC (last level
cache). For stateful NFs, the processing cost of a packet may
vary based on cache pollution level. We plan to investigate
and incorporate the cache interference in the CPU prediction
model.

Scale-up and scale-out scalability: Scalability is a key
factor for a load balancer. The load balancer itself should add
minimum latency to the users’ traffic. EdgeBalance leverages
lockless and per core data structure to efficiently scale up
across the cores. We are measuring the maximum throughput
by varying the number of cores. In a large scale network
deployment, multiple load balancers are required to avoid a
bottleneck at the load balancer itself. We are investigating
how to exchange minimum information across load balancers
to efficiently balance the flows for a large scale deployment.

Stateful NFs and real traces: Multiple network functions
are stateful, which means they need to manage and maintain
per-flow state internally. In future, we will use advanced state-
ful network functions (e.g., a stateful IDS) in conjuction with
real network edge traces to evaluate EdgeBalance.
Acknowledgements: This work was supported in part by
NSF grants CNS-1253575 and CNS-1763548.

References

[1] João Taveira Araújo, Lorenzo Saino, Lennert Buytenhek,
and Raul Landa. Balancing on the edge: Transport affin-
ity without network state. In 15th {USENIX} Sympo-
sium on Networked Systems Design and Implementation
({NSDI} 18), pages 111–124, 2018.

[2] Mohit Aron, Darren Sanders, Peter Druschel, and Willy
Zwaenepoel. Scalable content-aware request distribu-
tion in cluster-based network servers. In USENIX An-
nual Technical Conference, General Track, pages 323–
336, 2000.

[3] BESS. Berkeley Extensible Software Switch. https:
//github.com/NetSys/bess. Accessed: 2018-06-06.

[4] Emiliano Casalicchio and Michele Colajanni. A client-
aware dispatching algorithm for web clusters providing
multiple services. WWW, 1:535–544, 2001.

[5] Mark E. Crovella, Mor Harchol-Balter, and Cristina D.
Murta. Task assignment in a distributed system: Improv-
ing performance by unbalancing load, 1997.

[6] DPDK. DPDK data plane development kit. https:
//www.dpdk.org. Accessed: 2018-06-06.

[7] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A fast and reliable soft-
ware network load balancer. In 13th {USENIX} Sympo-
sium on Networked Systems Design and Implementation
({NSDI} 16), pages 523–535, 2016.

[8] Aaron Gember, Anand Krishnamurthy, Saul St
John, Robert Grandl, Xiaoyang Gao, Ashok Anand,
Theophilus Benson, Vyas Sekar, and Aditya Akella.
Stratos: A network-aware orchestration layer for virtual
middleboxes in clouds. arXiv preprint arXiv:1305.0209,
2013.

[9] Aaron Gember-Jacobson, Raajay Viswanathan,
Chaithan Prakash, Robert Grandl, Junaid Khalid,
Sourav Das, and Aditya Akella. Opennf: Enabling inno-
vation in network function control. In ACM SIGCOMM
Computer Communication Review, volume 44, pages
163–174. ACM, 2014.

[10] Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Se-
ungjoon Lee. Network functions virtualization: Chal-
lenges and opportunities for innovations, 2015.

[11] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar,
Dongsu Han, and Sylvia Ratnasamy. Softnic: A software
nic to augment hardware. Technical Report UCB/EECS-
2015-155, EECS Department, University of California,
Berkeley, May 2015.

6

https://github.com/NetSys/bess
https://github.com/NetSys/bess
https://www.dpdk.org
https://www.dpdk.org


[12] Mor Harchol-Balter. Task assignment with unknown du-
ration. In Proceedings 20th IEEE International Confer-
ence on Distributed Computing Systems, pages 214–224.
IEEE, 2000.

[13] Mor Harchol-Balter and Allen B Downey. Exploiting
process lifetime distributions for dynamic load balanc-
ing. ACM Transactions on Computer Systems (TOCS),
15(3):253–285, 1997.

[14] Guerney DH Hunt, Germán S Goldszmidt, Richard P
King, and Rajat Mukherjee. Network dispatcher: A con-
nection router for scalable internet services. Computer
Networks and ISDN Systems, 30(1-7):347–357, 1998.

[15] Sumit Maheshwari, Dipankar Raychaudhuri, Ivan
Seskar, and Francesco Bronzino. Scalability and
performance evaluation of edge cloud systems for
latency constrained applications. In 2018 IEEE/ACM
Symposium on Edge Computing (SEC), pages 286–299.
IEEE, 2018.

[16] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. Silkroad: Making stateful layer-
4 load balancing fast and cheap using switching asics.
In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM
’17, 2017.

[17] Vladimir Olteanu, Alexandru Agache, Andrei Voinescu,
and Costin Raiciu. Stateless datacenter load-balancing
with beamer. In 15th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI}
18), pages 125–139, 2018.

[18] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang,
Aurojit Panda, Sylvia Ratnasamy, Luigi Rizzo, and Scott
Shenker. E2: a framework for nfv applications. In Pro-
ceedings of the 25th Symposium on Operating Systems
Principles, pages 121–136. ACM, 2015.

[19] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin
Murthy, Albert Greenberg, David A Maltz, Randy Kern,
Hemant Kumar, Marios Zikos, Hongyu Wu, et al.
Ananta: Cloud scale load balancing. In ACM SIGCOMM
Computer Communication Review, volume 43, pages
207–218. ACM, 2013.

[20] Larry Peterson, Ali Al-Shabibi, Tom Anshutz, Scott
Baker, Andy Bavier, Saurav Das, Jonathan Hart, Guru
Palukar, and William Snow. Central office re-architected
as a data center. IEEE Communications Magazine,
54(10):96–101, 2016.

[21] Pktgen-DPDK. Traffic generator: Pktgen-dpdk. https:
//git.dpdk.org/apps/pktgen-dpdk/.

[22] Robert Ricci, Eric Eide, and CloudLab Team. Intro-
ducing cloudlab: Scientific infrastructure for advancing
cloud architectures and applications. ; login:: the maga-
zine of USENIX & SAGE, 39(6):36–38, 2014.

[23] Mahadev Satyanarayanan. The emergence of edge com-
puting. Computer, 50(1):30–39, 2017.

[24] Abhigyan Sharma, Arun Venkataramani, and Antonio A
Rocha. Pros & cons of model-based bandwidth control
for client-assisted content delivery. In 2014 sixth in-
ternational conference on communication systems and
networks (COMSNETS), pages 1–8. IEEE, 2014.

[25] Trex. Cisco traffic generator: Trex. https://
github.com/cisco-system-traffic-generator/
trex-core.

[26] Wikipedia. PID Contoller. https://en.wikipedia.
org/wiki/PID_controller. Accessed: 2019-11-11.

7

https://git.dpdk.org/apps/pktgen-dpdk/
https://git.dpdk.org/apps/pktgen-dpdk/
https://github.com/cisco-system-traffic-generator/trex-core
https://github.com/cisco-system-traffic-generator/trex-core
https://github.com/cisco-system-traffic-generator/trex-core
https://en.wikipedia.org/wiki/PID_controller
https://en.wikipedia.org/wiki/PID_controller

	Introduction
	Why a new load balancer?
	EdgeBalance design
	Evaluation
	Related work
	Conclusions
	Discussion

