
Towards an OS for the Network Data Plane

Wei Zhang

?
, Abhigyan Sharma

†
, Kaustubh Joshi

†
, Timothy Wood

?

?
George Washington University,

†
AT&T Labs Research

Network Function Virtualization (NFV) promises a cloud-
computing-like shared platform for packet processing net-
work functions (NFs). Realizing this vision requires a
carefully managed packet processing architecture that en-
sures multiple tenants can safely and efficiently utilize re-
sources. Recent advancements such as user space I/O have
significantly improved the throughput (packets/sec) of x86-
based packet processing. However, current approaches ei-
ther rely on VM or container-based isolation between NFs,
which incurs high context switch overheads, or run NFs in
a shared address space without protection or proper perfor-
mance guarantees. Our position is that the data plane archi-
tecture must play the role of an operating system (OS) for
modular NFs run by different tenants, and hence it should
provide a number of OS-like capabilities, including:
Memory protection: Similar to the abstraction of an OS pro-
cess, the contents of memory for an NF and a tenant must be
protected from others.
Resource allocation: Similar to an OS process scheduler,
resource allocation should balance the twin goals of high
throughput and fairness among tenants.
State management: Similar to a file system, state manage-
ment should enable modules to store processing state, e.g.,
TCP connection state in a stateful NF.
Access control: Similar to the concepts of OS users & per-
missions, access control should determine the privilege level
of tenants and NFs to read or modify architectural compo-
nents, e.g, processing graph and per-flow state.

FastPaas Architecture
We are developing these capabilities in our data plane archi-
tecture called FastPath-as-a-service (FastPaas). FastPaas is
the first data plane architecture to protect modules written
in a native language. FastPaas implements a multi-threaded
modular data plane inside a single process, with one thread

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
c� 2017 ACM. ISBN

DOI: http://dx.doi.org/10.1145/3050220.3060608

Overlay 
node

Scheduler

Fa
st

Pa
as

 C
on

tro
lle

r
Co

re
 L

oa
d 

Ba
la

nc
er

M
PX

 
in

st
ru

m
en

t
Te

na
nt

 
 s

pe
cs

Ne
w

 N
F 

m
od

ul
e

Scheduler
Overlay 

node 
(immutable)

Tenant B

Tenant A

Kernel Space

HW: NICs

User Space

DM
A

Bypass Processor + Bound Table

Worker Thread

Bo
un

d 
Ch

ec
k

Worker Thread

NF
NF NF

NF

Flow State Store
Flow entries (partition 1) Flow entries (partition 2)

NF

NF

NF

NF

NF

DM
A

NIC 
Controller

 T
ra
ffi

c 
st

at
s

Up
da

te
 

gr
ap

h Tenant C

Fa
st

Pa
as

 P
ro

ce
ss

Tenant A (0.5), 
Tenant B

Tenant A (0.5), 
Tenant C

NF NF
Tenant A

Figure 1: FastPaas Architecture

dedicated to processing packets on each core (Fig 1). Fast-
Paas maintains a unified packet processing graph, as a DAG,
across all tenants, whose nodes correspond to NF modules.
The branches in the graph encode packet processing rules
that are implemented by FastPaas, e.g., send port 80 traffic
to Cache-Node, and remaining traffic to Firewall-Node. The
cloud administrator can specify some parts of the graph as
unmodifiable by tenants. For example, a node that checks if
the incoming packets follow the datacenter’s security policy
for source IP addresses could be specified as mandatory.

Resource Allocation: FastPaas must make both coarse
grained resource management decisions, e.g., how many
cores to allocate for processing traffic from different tenants,
and fine grained scheduling decisions, e.g., which batch of
packets should be processed next on a given core. In mak-
ing these decisions, FastPaas scheduler must provide fair-
ness for tenants (weighted by priority) accounting for both
packet arrival rates and the computation cost of tenants’ ser-
vice chains. Further, FastPaas must also ensure high utiliza-
tion of all the cores towards increasing the total throughput.

FastPaas scheduler must reduce fragmentation of a batch
of packets due to branches in the processing graph. Frag-
mentation can diminish benefits of batching by reducing
instruction cache hit rates when packets in batch are pro-
cessed by separate sets of NF modules. To improve per-
formance, FastPaas seeks to leverage advance NIC features
(e.g., programmable filtering criteria [1]) for mapping in-
coming packets to hardware queues that are likely to take
the same path in the graph.
State Management & Access Control: FastPaas provides
a common state store that NF modules can use. The store
is indexed by tenant ID and flow ID. The flow ID is, for ex-
ample, a hash of the five tuple. This store enables modules
to keep per-flow statistics in fields defined by the module it-

195



self. The data store supports read/write access control lists
on flow entries as well as on each field to protect the ten-
ant’s and NF’s sensitive information. We will explore ways
in which a common state store simplifies data management
issues, e.g., amortizing flow lookup costs across NFs, and
state replication for elastic scaling (e.g., OpenNF [2]) or for
fault tolerance (e.g., FTMB [3]).

Memory Protection: There are three main approaches
for protecting a module’s memory contents within a shared
process: (1) using a memory-safe language such as Rust,
Go, or Java; (2) using a purely software-based memory pro-
tection for native languages (C/C++) based on static analy-
sis and code instrumentation; and (3) using hardware-based
protection to reduce the overhead of a purely software-based
approach. The latter two approaches can protect modules in
native languages and hence can make use of the large base
of existing NFs written in those languages, and developers
that are familiar with those languages.

We have evaluated the overhead of a state-of-the-art hard-
ware protection called MPX introduced in Intel Skylake pro-
cessors. MPX introduces new registers for storing bounds
and instructions for checking the a memory address against
stored bounds. Bounds are maintained on a per-pointer basis
in an in-memory data structure using compiler instrumenta-
tion and are referred to prior to a memory access by a pointer.
We found that that MPX incurred a 1.6⇥ overhead in exe-
cution time and 1.5⇥ overhead in memory use for a micro
benchmark of the malloc module. Interestingly, we find that
the primary cause of the overhead is the loading and storing
of bounds in registers from the in memory bounds table. The
bounds checking operations result in less than 6% overhead
for both computation and memory.

The above insight motivates us to design a coarse-
grained hardware memory protection system. Its key
idea is to define a small number of contiguous memory re-
gions that a module is allowed to access during its execution.
These regions include a per-module heap, a per-thread stack,
and boundaries for packets in the batch being processed. Us-
ing a small number of protection boundaries significantly re-
duces the size of the bounds table and the number of memory
accesses to the bounds table. Thus, it reduces memory and
computation overhead, but still protects protecting the mem-
ory of an NF and the traffic of a tenant. It achieves efficiency
by ignoring pointer bounds violations as long as the memory
accessed by a pointer is within the coarse-grained boundary
that the pointer belongs to.

Evaluation: We present a preliminary evaluation of Fast-
Paas’s memory protection by manually instrumenting the NF
module code. Our work on automatic source code instru-
mentation using the LLVM toolchain is ongoing. We test the
performance first with a pool of preallocated 64-byte packets
on the test machine and then by sending traffic from a sepa-
rate client machine to the test machine to include the cost of
NIC processing. Fig 2 shows the results for a traffic policer
(rate limiter) module. We find qualitatively similar findings
for other modules (macswap and longest-prefix-match) also.

We observe that the default MPX protection (Def/MPX)
significantly reduces throughput by up to 46% compared to

 0
 20
 40
 60
 80

Wo/Prot
Def/MPX

FastPass/RW

FastPaas/WOnly

Safecode

Th
ro

ug
hp

ut
 (M

pp
s)

(a) Preallocated Pkts

 0
 2
 4
 6
 8

 10
 12

Wo/Prot
Def/MPX

FastPaas/RW
FastPaas/WOnly

Th
ro

ug
hp

ut
 (M

pp
s)

(b) Real Pkts

Figure 2: Memory protection schemes.
no protection (Wo/Prot). FastPaas achieves better through-
put since it eliminates most of the instructions for load-
ing/storing bounds. FastPaas/RW, which protects both read
and write accesses, achieves a throughput within 24% of the
original in both experiments. Since most of the pointer ac-
cesses are read-only, FastPaas/WOnly, which protects just
the writes, achieves an even higher throughput of 96% and
98% of the unprotected module.

FastPaas’ overheads appear similar to other protection
approaches including a memory safe language (Rust) and
Safecode, which uses static analysis and runtime checks to
protect C programs [4]. We found that FastPaas/RW has
throughput similar to Rust’s version of macswap. Evalu-
ation of Rust for other modules is a topic of our ongoing
work. Although Safecode has comparable performance to
FastPaas/RW, but it does not protect packet data as it de-
clared by an external memory allocator (DPDK). Unfortu-
nately, we could not test Safecode’s performance with real
traffic, since the DPDK library reported exceptions when
running modules compiled with Safecode. Our initial results
suggest that FastPaas provides memory protection while giv-
ing additional flexibility of using native language modules
and well known data plane libraries such as DPDK.

Conclusions: A multi-tenant NFV platform must strike
a careful balance between isolation and efficiency. While
prior approaches have required heavy-weight techniques like
virtualization to separate tenants, FastPaas leverages new
memory protection CPU instructions to provide security
at an appropriate granularity with minimal impact on per-
formance. FastPaas allows multiple tenants to be safely
deployed within a shared address space, with isolation,
scheduling, state management, and access controls all pro-
vided by the framework instead of the underlying OS. We are
continuing to develop FastPaas and explore how it can pro-
vide prioritized resource allocations, simplify state manage-
ment, and enforce appropriate security policies. This work
was supported in part by NSF Grant CNS-177651.

References
[1] Antoine Kaufmann and et al. High Performance Packet

Processing with FlexNIC. In ASPLOS, 2016.
[2] A Gember-Jacobson and et al. OpenNF: Enabling inno-

vation in network function control. SIGCOMM, 2014.
[3] J Sherry and et al. Rollback-recovery for middleboxes.

In SIGCOMM, 2015.
[4] Dinakar Dhurjati and et al. SAFECode: Enforcing alias

analysis for weakly typed languages. In PLDI, 2006.

196


