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Abstract
Network function virtualization (NFV) allows network
functions to run as software on commodity servers. As
they become more complex and grow in processing cost,
replication is needed to ensure reliability and improve
NF performance. However, balancing the load across
multiple NFV servers can be challenging due to diverse
service costs, server and flow heterogeneity, and dy-
namic workload conditions. In this poster, we propose
NFVBalance, a resource-aware load balancer for net-
work function service chains. NFVBalance models the
CPU load on NFV servers in order to effectively guide
its load balancing policies, while simultaneously achiev-
ing high performance with a DPDK-based design.

1 Introduction
Software-based data planes for NFV have seen a flurry of
work recently. An important class of such data planes use
a modular approach in which network functions (NFs)
are implemented as modules that can be composed into
service chains [1, 2]. Infrastructures that allow these
modules to share CPU resources are particularly appeal-
ing since they support multi-tenancy or diverse service
chains applied to different traffic classes.

Our work considers a cluster-wide deployment of such
a modular data plane. Existing efforts on modular data
planes focus on techniques to perform the workload as-
signed to an execution thread efficiently and securely.
Our work focuses on the complementary problem of how
to assign workloads to NFV servers and cores in the first
place. These two efforts can deliver the promise of a
high-performance and cost-effective software data plane.

To this end, our work seeks to address two questions.
The first is a modeling question. Can we design a simple
model that can predict the utilization of a CPU core as
a function of the traffic assigned to it and a parameter
that represents the per packet processing cost? Can this
model work well even with multiple traffic classes each
with different processing costs? Is this model robust to
cross-core interference and different types of processing
performed by NF modules?

Next, our work seeks to evaluate the usefulness of the
model in load balancing traffic across CPU cores and
across servers. In particular, how effective is the model
in meeting diverse load balancing objectives, e.g., con-
solidate load on the least number of cores, minimize the
maximum load on any core among a given number of

cores, or ensure that higher priority traffic classes do not
experience CPU load above a given threshold.

A model-based approach offers several advantages
over a monitoring-based approach. Models for NFV re-
source utilization enable automation systems to predict
behavior and proactively manage the system. In contrast,
a more passive monitor-driven approach is likely to have
out of date information potentially resulting in load os-
cillations. Since a model-based approach does not rely
on continuous monitoring from processing cores, it also
avoids measurement overhead at those cores.

Further, our work explores questions related to inte-
grating a model-based approach with a stateful load bal-
ancer deployed in front of a pool of NFV servers. In par-
ticular, how the load balancer can efficiently track traffic
statistics for each traffic class across multiple processing
threads? How to translate the model developed above
into a load balancing strategy that is amenable to an effi-
cient implementation? Finally, do the performance gains
of a model-based approach over existing strategies such
as round-robin justify the additional engineering effort?

In the next section, we present our model and report
on our experience in empirically validating the model us-
ing a DPDK-based prototype. We then describe how we
envision this model being integrated with our high per-
formance load balancer architecture.

2 Modeling Network Processing Costs
CPU load is an important metric to evaluate whether an
NFV system is overloaded or is wasting resources. Many
existing systems monitor the CPU usage and report them
to a controller or load balancer. However, traffic in a high
performance NFV environment can change rapidly. This
can easily result in stale monitoring data. Rather than
rely on feedback from data plane nodes, we are designing
a model to predict CPU load, which is affected by the
NF or chain processing cost per packet and the number
of packets per second.

To train the model, we initially profile each network
function to calculate the average processing cost per
packet for each service chain. We then can estimate CPU
usage as a product of the arrival rate of packets for each
chain and its processing cost. Aggregating across all ser-
vice chains on a specific core results in an estimate of the
overall load.

Empirical Validation: We present a preliminary eval-
uation of our model’s accuracy in predicting CPU loads.
In the test, on one core, we run two service chains with
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Figure 2: NFVBalance Architecture

processing cost 300 ns (high) and 100 ns (low) respec-
tively. The arrival rate of high versus low cost service
chain is about two times. We send 64 byte packets to
the load balancer by using MoonGen. Figure 1 shows
that even with our simple model, the aggregate predicted
CPU usage closely tracks the measured CPU usage from
the two service chains.

3 Load Balancing System Design
We are applying the above model-based approach in de-
signing NFVBalance. The key components of NFVBal-
ance are shown in figure 2. The critical path for packet
processing goes through the Forwarder components,
which can be replicated across multiple threads for scal-
ability. The Forwarder must efficiently redirect incom-
ing packets to the an NFV server running the appropriate
service chain. To avoid contention between threads, each
Forwarder maintains its own statistics about the flows it
processes. This data is then periodically aggregated by
the Monitoring component, which tracks statistics on a
per-traffic class basis. The Topology Controller tracks
which service chains are active on which servers and
can start and stop additional replicas. Information from
these components is fed to the Policy component, which
guides balancing decisions made by the Forwarders.
Policy Component: Our architecture separates the data
path (through the Forwarders) from the monitoring and
control paths. This allows load balancing policies to
be periodically updated and pushed to the Forwarders.
Such dynamic load balancing is necessary to deal with
server heterogeneity and dynamism in NFV workloads,
e.g., short-lived vs. long-lived flows, and skewed inter-
arrival times of flows. However, the load balancing pol-

Server1 CPU (%) Server2 CPU (%)
NFVBalance 30.40 34.42
RoundRobin 26.04 53.29

Table 1: CPU usage of NFVBalance vs Round Robin

icy should not be complex, especially in networks with a
high arrival rate of flows. So we need a way to dynam-
ically distribute flows in a very light manner, which can
take into account flow and server heterogeneity.

Our load balancing policy uses our model to dynam-
ically adjust weights for a weighted round-robin policy.
For each core, we calculate an aggregate processing cost
AC as a product of processing cost for each chain and the
number of packets of each chain over the total number
of packets on that core. The weight of a core is deter-
mined based on the objective of load balancing, e.g, to
minimize the load on the most utilized core, we use 1/AC
to get an updated weight for that core.

Preliminary Result: Our experiment compares
NFVBalance to round-robin. Our testbed consists of two
data plane nodes – server 1 and server 2. On each server,
we use one core to run two service chains. The process-
ing cost of each service chain is different on each server
(chain 0, server 1: 100ns; chain 0, server 2: 200ns; chain
1, server 1: 100ns; chain 1, server 2: 300ns). Table 1
shows that round robin results in a CPU usage of server 2
that is twice that of server 1, while NFVBalance achieves
a much more even load distribution.

Conclusions and Future Work. To our knowledge,
this is the first work to explore a model-based load bal-
ancing approach for software-based data planes. Our
initial results show that a model-based approach is ac-
curate in predicting utilization for service chains with
varying traffic demands and processing costs. In prelimi-
nary experiments, our NFVBalance prototype distributes
load more evenly than static policies such as round-robin.
There are several avenues of future work. The first one
is a more robust validation of our model for more types
of NFs and across multiple server cores. We will also
look to evaluate load balancing performance for other ob-
jectives and compare against monitor-based approaches.
Finally, we will seek to address systems challenges in
scaling the load balancer itself to multiple servers.
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