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ABSTRACT
A key challenge in client-assisted content delivery is deter-
mining how to allocate limited server bandwidth across a
large number of files being concurrently served so as to op-
timize global performance and cost objectives. In this pa-
per, we present a comprehensive experimental evaluation of
strategies to control server bandwidth allocation. As part
of this effort, we introduce a new model-based control ap-
proach that relies on an accurate yet concise “cheat sheet”
based on a priori offline measurement to predict swarm per-
formance as a function of the server bandwidth and other
swarm parameters. Our evaluation using a prototype sys-
tem, SwarmServer, instantiating static, dynamic, and model-
based controllers shows that static and dynamic controllers
can both be suboptimal due to different reasons. In com-
parison, a model-based approach consistently outperforms
both static and dynamic approaches provided it has access
to detailed measurements in the regime of interest. Never-
theless, the broad applicability of a model-based approach
may be limited in practice because of the overhead of devel-
oping and maintaining a comprehensive measurement-based
model of swarm performance in each regime of interest.

1. INTRODUCTION
Faced with the challenge of ever-increasing demand

for content, content distributors have turned to client-
assisted content delivery in recent times. A client-assisted
content delivery architecture enables content distrib-
utors to provide performance in a scalable and cost-
effective manner by opportunistically leveraging client
resources, especially their uplink bandwidth, to aug-
ment their managed infrastructure resources. Although
client-assisted content delivery systems have their roots
in peer-to-peer file sharing systems [3, 18], commercial
CDNs such as Akamai, Velocix, and Octoshape [1, 28,
17] as well as live streaming services such as PPLive
and Sopcast [15, 25] have warmed up to using them for
mainstream enterprise content delivery in recent times.

A key problem in client-assisted content delivery is
bandwidth management, i.e., determining how to allo-
cate limited server bandwidth across a large number of
files being concurrently served to clients so as to bal-

ance the performance and cost objectives of the con-
tent distributor. Unlike purely client-server systems or
purely peer-to-peer systems, this problem is particu-
lar to client-assisted content delivery systems that at-
tempt to combine the predictable performance and ease
of management of the former with the scalability and
cost-effectiveness of the latter. The sever bandwidth
allocated to a swarm, or a set of clients concurrently
downloading the same file, is critical in determining the
effectiveness of client-to-client exchanges and by conse-
quence client-perceived performance. Furthermore, the
appropriate allocation may be counter-intuitive, e.g., a
popular file requires less server bandwidth compared to
an unpopular file, all else being equal, in order to ensure
similar client-perceived performance.

Our primary contribution is a measurement-driven
comparative analysis of several existing and new strate-
gies for allocating server bandwidth in client-assisted
content delivery systems. To this end, we classify these
bandwidth allocation strategies, or controllers, into three
categories. The first is static, a class of controllers that
use simplistic strategies such as allocating bandwidth
uniformly, on a best-effort basis, or proportional to the
demand across files [3]. The second is dynamic, a class
of controllers that constantly adjust the allocation in re-
sponse to fine-grained client-perceived performance so
as to optimize the performance or cost objectives of the
content distributor [19, 20].

In this paper, we present a third, new class of con-
trollers called model-based controllers that allocate server
bandwidth based on a predictive model of client-perceived
performance as a function of the server bandwidth and
other swarm parameters such as the request arrival rate,
file size, and client upload capacities. Unlike dynamic
controllers that can be suboptimal due to long conver-
gence delays while searching for an optimal allocation
in situ, model-based controllers can jump to the opti-
mal allocation in a single step by solving the underlying
optimization problem “on paper” .

We have implemented a prototype system, Swarm-
Server, to facilitate our comparative analysis of con-
trollers. In addition to several simple static and dy-
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namic controllers, SwarmServer supports a model-based
controller called CheatSheet for three bandwidth alloca-
tion objectives: minimizing the average download time,
maximum download time, or the server bandwidth con-
sumed so as to achieve a target performance objective.
CheatSheet uses extensive a priori measurement to de-
velop an accurate and concise model of performance
as a function of the server bandwidth and a number
of swarm parameters. To our knowledge, CheatSheet
is the first attempt at developing a detailed empirical
model of swarm performance.

Our extensive experiments with SwarmServer in con-
junction with BitTorrent swarms running over 350 Plan-
etLab nodes reveal several insights. First, simple static
controllers are hit-or-miss; while they perform well for
some performance objectives and workloads, even out-
performing dynamic controllers, they fall severely short
on others. The suboptimal performance of static con-
trollers is unsurprising and consistent with previous find-
ings [19] for one our three objectives of interest. Sec-
ond, model-based control is feasible and promising—
CheatSheet consistently outperforms both static and
dynamic controllers provided its model is based on de-
tailed a priori measurements in an environment similar
to the operational environment. CheatSheet performs
up to 4× better than static schemes and up to 1.7×
better than dynamic controllers.

Nevertheless, having gone through the experience of
building a model-based controller, our conclusions about
its practicality are somewhat mixed because of several
reasons. First, it is hard. To appreciate this, consider
that CheatSheet’s model used in the experiments in
this paper alone required over 12 days of measurement
data on PlanetLab so as to account for a number of pa-
rameters such as the server bandwidth, request arrival
rate, distribution of client upload capacities, file size,
etc. Second, while a measurement-driven model is ro-
bust to small variations in the operational environment,
significant changes require recalibrating the model. For
example, we find that the model developed over Planet-
Lab is inaccurate when deployed on a public cloud such
as Amazon EC2 or a local cluster in our department.
Similarly, significant changes in the client population
or behavior such as participation in multiple swarms
introduce further uncertainties into the model. Thus,
model-based control may be appropriate primarily for
relatively predictable environments (e.g., distributing
TV shows and movies to FIOS [29] customers).

The rest of the paper quantifies these nuanced pros
and cons of the three classes of controllers. We begin
with a background on client-assisted content delivery.

2. BACKGROUND
Client-assisted content delivery seeks to combine the

best of traditional client-server and peer-to-peer swarm-

ing systems, namely, the predictable performance and
ease of management of the former and the scalability
and cost-effectiveness of the latter.

A client-assisted content delivery system consists of
a server that acts as the primary source for all con-
tent. All clients concurrently downloading the same file
are referred to as a swarm. Clients follow a common
peer-to-peer protocol for downloading (uploading) the
file from (to) other clients in the swarm. In this pa-
per, we focus on the BitTorrent protocol because of its
open nature and wide deployment, however our findings
are qualitatively applicable to other comparable plug-
ins offered by content distributors [1, 17]. The server
is logically centralized and participates by contributing
bandwidth to all swarms.

A key goal of a client-assisted content delivery system
is to optimize a system-wide objective, e.g., minimize
the average download time of all clients, by judiciously
allocating limited server bandwidth across all swarms.
To this end, a controller at the server collects infor-
mation from all swarms and uses this information to
compute and effect an allocation of server bandwidth
so as to optimize the system-wide objective.

2.1 Classification of controllers
We classify existing controllers as static or dynamic,

and introduce a new class called model-based controllers,
as described in turn below.

Static: A static controller allocates server bandwidth
using a simple heuristic while being agnostic to the
system-wide performance objective and unresponsive to
actual client-perceived performance. Static controllers
therefore obviate any online measurement of client per-
formance. We analyze the following static controllers
in this study: (1) best-effort, or using BitTorrent as-is
by repurposing a common seeder across all swarms as
the server; (2) equal-split, or splitting server bandwidth
equally across all active swarms; (3) proportional split,
or allocating bandwidth proportional to the arrival rate
within a swarm.

Dynamic: A dynamic controller continuously moni-
tors fine-grained information about client-perceived per-
formance for all clients in each swarm (see Figure 1),
and accordingly adjusts the bandwidth allocation in
each monitoring epoch. An example of a dynamic con-
troller is AntFarm [19] that monitors the number of
blocks uploaded and downloaded by each client in each
epoch and uses a strategy based on perturbation and
gradient-ascent in order to optimize the aggregate down-
load rate across all clients across all swarms.

Model-based: A model-based controller relies on a
predictive model of swarm performance as a function
of the supplied server bandwidth and other swarm pa-
rameters such as the file size, the peer arrival rate, and
the upload capacity distribution of peers. Unlike dy-
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Figure 1: A comparison of dynamic and model-based control architectures.

namic controllers, a predictive model obviates explicit
measurement of client-perceived performance, requiring
only parameters that are already available or easily in-
ferred at the server. More importantly, it obviates in
situ perturbation and gradual adjustment of the allo-
cation enabling the controller to jump to the optimal
allocation in a single step by using the model to solve
the underlying optimization problem “on paper”. Thus,
a model-based controller can quickly adapt to sudden
changes in request arrival rates.

2.2 Limitations of dynamic control
Our motivation for investigating model-based control

stems from the limitations of dynamic controllers in re-
alistic environments. Unlike static controllers that are
but naive baseline strategies, the limitations of dynamic
control are less obvious and are described next.

Convergence time: Dynamic control works in a
feedback-driven manner by perturbing the current allo-
cation, monitoring the performance impact of the per-
turbation, and accordingly determining the next per-
turbation. This approach is prone to prohibitively long
convergence delays, especially with hundreds or thou-
sands of swarms and optimization objectives that do not
lend themselves well to greedy heuristics. Even with a
small number of swarms and a greedy gradient ascent
strategy, the convergence time can be on the order of
thousands of seconds. This is because the effect of a
perturbed allocation can take several minutes to prop-
agate through the swarm so as to be observable by the
controller, and adjusting the allocation more frequently
is likely to be unproductive or even detrimental.

As an example, AntFarm updates its bandwidth once
every 300 seconds by 5KB/s, so an adjustment of 50KBps
requires nearly an hour to take effect. If peer arrival
rates change significantly during the course of a typical
convergence period, the controller can perpetually be in
a state of suboptimal allocation. Even with predictable
arrival rates, a dynamic controller needs to be carefully
designed for each performance objective or risk perpet-
ually oscillating about the optimal allocation. In com-

parison, with an accurate model, a model-based con-
troller can potentially estimate the optimal allocation
in a single epoch of a shorter duration that is required
only to obtain a reliable estimate of the arrival rate.

Measurement overhead and error: The perfor-
mance of any controller in steady state depends on how
accurately it can estimate the relation between server
bandwidth and swarm performance. Dynamic controllers
could be inaccurate because they measure swarm per-
formance for the current bandwidth allocation only for
a single measurement interval of a few hundred sec-
onds. Even with a fixed server bandwidth, the number
of peers joining the swarm and the upload capacities
of peers in the swarm can differ from one measurement
interval to the next. Thus, dynamic controllers have to
choose between the high overhead of fine-grained mea-
surement and the inaccuracy of infrequent or sampled
measurements.

These limitations of dynamic controllers compel us to
explore model-based controllers. Our hope is that the
measurement overhead could be relegated to an a pri-
ori offline phase to develop an accurate model of swarm
performance in exchange for increased responsiveness in
the operational phase. The challenge, of course, is to
develop an accurate model of swarm performance with
a tractable measurement overhead and small represen-
tation size, a challenge we address next.

3. A MEASUREMENT-BASED MODEL
In this section, we develop a measurement-based model

of swarm performance, which is the key building block
for a model-based controller. Unlike prior theoretical
models [22, 6, 14] that over-simplify swarm behavior,
our work, to our knowledge, is the first effort at develop-
ing a measurement-based model of swarm performance.

3.1 Goal and model assumptions
We start with the following question: what is the av-

erage download time of peers in a BitTorrent swarm
when given a certain amount of server bandwidth? The
answer to this question of course depends on several
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characteristics of the swarm such as the arrival and de-
parture patterns of peers, their upload and download
capacities, the size of the file being distributed, etc. The
answer also depends on design parameters of BitTor-
rent clients such as the number of active peers to which
a peer concurrently uploads and how it splits its up-
load capacity across them, the length of an optimistic
unchoke round, the size of chunks, etc. Finally, net-
work conditions and artifacts of the transport protocol
(TCP or custom transport protocols such as µTP for
non-interfering downloads [27]) will also impact swarm
performance. Clearly, a model attempting to account
for all of the factors affecting a swarm’s performance
quickly becomes intractable.

In our quest for a model that simple and useful in
practice, we make several simplifying assumptions that
abstract away less important details of the system. To
this end, consider a swarm distributing a file of size S
to peers arriving at a rate λ. The upload capacities of
arriving peers are drawn from a distribution with mean
µ. The download capacity of peers is unlimited. Peers
depart immediately after finishing their download (so
the departure rate of peers is equal to the arrival rate
λ in steady state). Let x denote the (fixed) bandwidth
supplied by the server. Our model postulates that the
average download time of peers, τ , can be determined
as a function of x, µ, λ and S. We state this dependence
as

S

τ
= f(x, µ, λ, S) (1)

The dependence between f(.) and τ is stated in this
seemingly convoluted manner because it is convenient
to refer to f(.) as “swarm performance”, i.e., the higher,
the better.

By assuming that τ is determined by the above four
parameters alone, the model implicitly makes a few as-
sumptions. The model assumes that network loss rates
and round-trip times are not so high that they reduce
the effective average peer upload capacity (or equiva-
lently that µ already incorporates these effects). It also
implicitly assumes that all peers use a standard BitTor-
rent client and that implementation variations across
operating systems are minor. It further assumes that µ
already incorporates the effect of user-specific configu-
rations that limit their upload contribution. Finally, the
model assumes that despite all these heterogeneous fac-
tors affecting the distribution of peer upload capacities
in practice, this distribution is stationary, so the aver-
age upload capacity µ (in conjunction with the other
three parameters) is sufficient to determine the average
download time.

3.2 Measurement-based model
We take an empirical, measurement-driven approach

to capture the relationship in Equation (1). A naive

approach to this end would be to “measure” the rela-
tionship posed in Equation (1) for all foreseeable values
of the four underlying dimensions (x, µ, λ, S), which is
impractical. Instead, our approach is to summarize the
relationship using a small number of measured scenar-
ios and use simple interpolation to estimate the unmea-
sured scenarios. We begin with a description of our
measurement setup.

3.2.1 Measurement setup
We use PlanetLab for running private swarms in or-

der to obtain measurement data as follows. Two nodes
act as the server and the tracker respectively, while the
rest of the nodes act as peers and run an instrumented
BitTorrent client [11]. In each swarm run, peers arrive
over time to download the file and depart immediately
after completing the download. Peer inter-arrival times
follow an exponential distribution with mean 1/λ. Each
swarm is run long enough so that the download times
of peers stabilize, and the server records the average
download time of peers that have completed downloads
at the end of the experiment. Each swarm run is re-
peated five times with a fixed set of swarm parameters
(x, µ, λ, S) and different runs vary these parameters.

Figure 2 shows the aggregate results of our measure-
ment experiments. In this figure, each point corre-
sponds to a swarm run averaged over five repetitions
as described above. We use the upload capacity dis-
tribution of peers reported in [21], which was scaled
and truncated to remove very high capacity peers so as
to accommodate the daily limit on the maximum data
transfer imposed on PlanetLab nodes. The resulting
average upload capacity (µ) was 100KBps with upload
bandwidths in the range of 40-200 KBps for individual
peers. No restrictions were imposed on the maximum
download rate of any client. The file size is fixed at
S=10MB. Each line corresponds to a fixed arrival rate
λ as shown, and plots the mean download rate for dif-
ferent values of the server bandwidth x that is varied
from 0 to 100KBps (also the average peer upload ca-
pacity) in 10KBps increments. With these parameters,
a swarm run takes between 2000 to 5000 seconds, so
the total running time to generate this figure is over 10
days (5 runs per point × 50 points × an hour roughly
per run = 250 hours).

3.2.2 Swarm performance vs. server bandwidth
Figure 2 presents several insights about how the swarm

performance depends on server bandwidth and peer ar-
rival rate. First, swarm performance as expected in-
creases with server bandwidth keeping all else fixed,
as can be seen from the increasing trend of all lines.
Second, swarm performance is concave with respect to
server bandwidth. This is because, when the server
bandwidth is very low, it becomes the bottleneck pre-
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Figure 2: Dependence of swarm performance on
server bandwidth, and peer arrival rate λ for S
= 10MB and µ = 100KBps. Unit of λ = sec−1.

venting peers from efficiently utilizing their upload ca-
pacity for exchanging blocks. In this regime, increas-
ing server bandwidth slightly improves the efficiency of
P2P exchanges and therefore performance significantly.
At high values of server bandwidth, there is less room
for improving the efficiency of P2P exchanges, so the
server’s bandwidth improves performance similar to tra-
ditional client-server systems, i.e., the bandwidth is di-
vided across extant peers. When the server bandwidth
equals the average peer upload capacity we find that a
swarm’s utilization of P2P bandwidth is about as effi-
cient as it can be, and any additional server bandwidth
is simply used as in a client-server system. As a result,
the swarm performance in the regime x > µ (not shown
in Figure 2) can be easily derived analytically obviating
time-consuming measurements.

Third, in the regime x ≤ µ shown in the figure, swarm
performance improves with the arrival rate (keeping
all else fixed). The lines corresponding to increasing
λ increasingly appear pulled towards the top-left. At
very low arrival rates, e.g., λ=1/100/s, the swarm es-
sentially behaves like a client-server system as there is
at most one peer most of the time, so the correspond-
ing curve resembles the line y = x. At higher arrival
rates, the swarm remains efficient (i.e., it maintains a
healthy download rate of over 80KBps) for values of x
much smaller than µ. This is because large swarms are
mostly self-sustaining and need only a tiny amount of
server bandwidth to supply missing blocks in the un-
likely event that none of the extant peers possess those
blocks.

3.2.3 Model representation
To concisely represent the model, we carefully select

a small number of values of each parameter for measure-
ments. The model captures the dependence of swarm
performance on server bandwidth and peer arrival rate
for a given upload capacity distribution and file size (as

in Figure 2) using a small number (≈ 100) of values. We
take measurements for 10 values of x ranging from µ/10
to µ, and for ten values of λ in a range determined by
a metric we refer to as the “healthy swarm size”. The
healthy swarm size is the number of peers when the effi-
ciency of P2P exchanges in maximum. The intuition for
healthy swarm size comes from Little’s law [10], healthy
swarm size is λ×S/µ, as S/µ is average download time
of peers in this case. When the healthy swarm size is
one or less, the swarm essentially behaves like a client-
server system. We empirically observe that when the
healthy swarm size is 50 or more, the swarm is essen-
tially self-sustaining, i.e., even with a server bandwidth
of just a µ/10, the swarm is efficient. So we take mea-
surements for values of λ selected such that the healthy
swarm size λS/µ increases from 1 to 50 in 10 equal in-
crements. The total number of combinations of x and
λ is therefore 100.

We maintain a table, referred to as the “cheat sheet”,
that records the swarm performance for all of the above
combinations. This cheat sheet is used to approximately
estimate by simple linear interpolation the swarm per-
formance for values of x and λ that are not explicitly
measured.

3.2.4 Varying file size
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Figure 3: Dependence of swarm performance on
server bandwidth for varying file size S.

The cheat sheet as described above can only be used
to estimate swarm performance for a given file size.
To address file size diversity, we use an interpolation
approach similar to the one used for arrival rates and
server bandwidth. A separate cheat sheet is stored for
a small number of file sizes spanning the regime of in-
terest, e.g., 10 file sizes in geometric progression from
1MB to 10GB, and the swarm performance for file sizes
in between is estimated via interpolation.

At the onset of this work, we expected that a larger
file size could be treated as equivalent to a larger ar-
rival rate, i.e., f(x, µ, λ, kS) could be approximated as
f(x, µ, kλ, S), thereby obviating the need to maintain
separate cheat sheets for different file sizes. The intu-
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ition for this expectation is that λS (bits/sec) repre-
sents the aggregate demand arriving into the system,
so the response curve should not change significantly
if the demand remains unchanged. Unfortunately, this
turns out not to be the case as shown by the experiment
in Figure 3. The figure plots the swarm performance as
a function of the server bandwidth, and the different
lines increase (decrease) S (λ) by the same factor, i.e.,
λS is the same for all points in the graph. The lines
clearly show a slight uptrend suggesting that larger file
sizes boost swarming efficiency more than larger arrival
rates or, equivalently, a swarm distributing a larger file
performs better than a swarm distributing a smaller
file even though both have the same aggregate demand,
client upload capacities, and publisher bandwidth.

3.2.5 Variation in upload capacity distribution
There are two kinds of variations that occur in peer

upload capacities. First, the upload capacity distribu-
tion of any sample of peers currently participating in
a swarm may differ from the overall distribution. Our
model implicitly accounts for this statistical variation
because peer upload capacities during measurements
are chosen by randomly sampling the distribution. Sec-
ond, the overall upload capacity distribution of peers
visiting the site can change. However, we expect that
upload capacity distribution is unlikely to change at
short time scales, as it depends on technology trends
and the population of users who visit the site, which is
likely to remain stable over the course of several months.

The changes in the upload capacity distribution at
time scales of several months can be addressed by up-
dating the cheat sheet with new measurements. Next,
we present two experiments in which we vary the up-
load capacity distribution. These experiments provide
evidence that new measurements are needed if the up-
load capacity distribution changes significantly, and also
show how swarm performance is affected on changing
the upload capacity distribution. Both experiments
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Figure 5: Swarm efficiency improves as upload
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were performed on a local cluster to reduce the vari-
ability due to available upload capacity on PlanetLab
nodes.

The first experiment shows that for the same mean
upload capacity, increasing the variance reduces the
swarm performance. For this experiment, the mean up-
load capacity fixed at 200 KBps, file size is set to 20 MB
and the server bandwidth is set to 60 KBps. In Figure
4, four bars are shown for each arrival rate. The first
bar is for a homogenous upload capacity and upload
capacities for the other three bars are sampled from a
normal distribution with specified mean and variance.
As the variance of upload capacities increases, swarm
performance reduces significantly, e.g. for λ = 1/10/s,
upload capacity reduces by half.

The second experiment shows that as mean upload
capacity increases (keeping variance the same), swarm
efficiency (the ratio of swarm performance to mean up-
load capacity) also increases. We experiment with mean
upload capacities in the range 50 KBps to 400 KBps.
Variance is always zero as we assign equal upload ca-
pacity to all peers. The server bandwidth is set to 30%
of the upload capacity. To match the aggregate demand
(λS) with the upload capacity, file size (S) is increased
in proportion to the upload capacity. Figure 5 shows
that for all arrival rates, an increase in upload capacity
(and a proportional increase in server bandwidth and
file size) also improves swarm efficiency.

3.2.6 Effect of measurement testbed
The measurement-based model requires network con-

ditions to remain relatively similar to the environment
in which the model’s measurements were obtained. We
repeated the experiment shown in Figure 2 on two other
testbeds - Amazon EC2 [5], and a local cluster. For the
EC2 experiment, we select equal number of machines
from five geographic locations to differentiate the EC2
testbed from the local cluster which has microsecond
round trip latencies. In Figure 6, we compared the
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mental testbed changes. Swarm performance is
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swarm performance on the three testbeds for a peer
arrival rate of λ = 1/5/s. Swarm performance on EC2
is up to 30 KBps higher than on PlanetLab. Experi-
ments on the local cluster show even better swarm per-
formance than on EC2. Thus, the measurement-based
model is most useful when it is feasible to conduct mea-
surements in regimes similar to those encountered in
deployment.

Swarm performance differs on the three testbeds as
their effective upload capacities are different. The round-
trip times in the local cluster are much smaller than in
PlanetLab which reflects in the form of higher effective
upload capacities and better performance. EC2 only
has a small extent of geographic diversity (five differ-
ent locations), so neighbor relationships between peers
in the same data center tend to dominate (a clustering
effect that has also been alluded to by prior work [11]).
This clustering effect again results in the form of EC2
nodes having higher effective upload capacities.

3.2.7 Summary and limitations
Although the measurement-based model can capture

the dependence on key swarm parameters such as server
bandwidth, peer arrival rate, file size, and upload ca-
pacity distribution, it still has several limitations. The
most critical limitation is the extensive measurement
needed to build a cheat sheet. The second limitation
is that an accurate estimate of upload capacity distri-
bution may not be available, e.g., due to peers down-
loading files from multiple swarms simultaneously. The
third limitation of the model is that it assumes each
peer arrives to download a file and departs only when
its download is complete. Prior studies indicate that
users may abort the download before completion and
return later to resume a download [26, 7]. Therefore,
the model also needs to account for peer arrivals and
departures in the middle of a download.

4. SwarmServer SYSTEM
In this section, we present an implemented prototype

of our system, SwarmServer, to compare different con-
troller strategies. We begin with a brief description of
our implementation and the content distribution objec-
tives that we use for our comparison. Then, we discuss
the design of model-based, dynamic, and static con-
trollers implemented in SwarmServer.

4.1 Implementation
SwarmServer system is implemented in Python and

consists of approximately 5000 lines of code. The sys-
tem does not require any modification to the BitTor-
rent protocol for either the peers or the tracker. Our
implementation uses the instrumented BitTorrent client
developed by Legout et al. [12], which we modified to
enable us to change the maximum upload bandwidth of
the client without restarting it.

4.2 Content distribution objectives
We compare controller strategies on three content dis-

tribution objectives.

• MIN AVG: Minimize the average download time
across all peers in all swarms for a given total
server bandwidth.

• MIN MAX: Minimize the maximum value of the
average download time across swarms for a given
total server bandwidth.

• MIN COST: Minimize the total server bandwidth
while achieving a set of specified target download
times for each swarm.

4.3 Model-based controller
We call the model-based controller CheatSheet. The

controller works without continuous measurement of client
performance. Instead, it determines server bandwidth
allocation by solving an optimization problem based on
the measurement-based model developed in §3.

Next, we describe the optimization formulations used
by CheatSheet to calculate bandwidth allocation for the
objectives introduced in Section 4.2. Below, we assume
that there are a total of k swarms and the average up-
load capacity, arrival rate, and file size of the i’th swarm
1 ≤ i ≤ k are given by λi, µi, Si respectively. The goal
is to determine server bandwidth allocations {xi}1≤i≤k

so as to optimize the desired objective.
Optimization formulation for MIN AVG:

min
∑

1≤i≤k

λiτi (2)
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subject to

τi = Si/f(xi, µi, λi, Si), 1 ≤ i ≤ k (3)∑
1≤i≤k

xi ≤ X (4)

The first constraint (3) above simply rephrases Equa-
tion (1) relating the average download time τ to the
server bandwidth x and other parameters of the swarm.
The second constraint above limits the total bandwidth
the server has at its disposal to allocate to the k swarms.

CheatSheet uses its measured knowledge of f(.) to
solve this optimization problem. If f(.) is known to
be smooth and concave in x, MIN AVG can be solved
using a greedy gradient-ascent strategy that computes
a unique, optimal solution as follows: (1) Start with
x1 = x2 = · · · = xk = ∆ for a small ∆; (2) Allo-
cate the next ∆ units of capacity (divided equally) to
the swarm(s) with the largest value(s) of the gradient
λif

′
(xi, µi, λi, Si); (3) If not all X units of capacity have

been allocated, goto (2). Else terminate.
If f(.) is piecewise linear and concave, the above strat-

egy still works, but the resulting solution may not be
unique. In order to be able to arrive at a unique opti-
mal solution, CheatSheet cleans the measured f(.) by
fitting smooth and concave polynomial curves for each
line in Figure 2. We assume that this data cleaning has
been already performed while describing the solutions
to the next two objectives as well.
Optimization formulation for MIN MAX:

min( max
1≤i≤k

(τi)) (5)

subject to the same constraints as (3) and (4) above.
If f(.) monotonically increases with x, MIN MAX can

be solved optimally using a simple greedy heuristic. For
a rate y, let x = f−1(y, µ, λ, S) denote the server band-
width x required to achieve an average download time
of S/y. The heuristic is as follows: (1) Initialize y = ∆
for a small ∆; (2) Set xi = f−1(y, µi, λi, Si), 1 ≤ i ≤ k;
(3) If (

∑
i xi < X), increment y to y + ∆ and goto (2).

Else, terminate.
The above algorithm starts with a small target mean

download rate (or large target average download time)
and checks to see if an allocation that achieves that tar-
get is feasible. If so, it sets the allocation accordingly
and increases the target. If not, the most recent al-
location minimizes the maximum value of the average
download time across the k swarms.
Optimization formulation for MIN COST:

min(x1 + · · ·+ xk) (6)

subject to

τi = S/f(xi, µi, λi, Si), 1 ≤ i ≤ k (7)

If f(.) is invertible, then MIN COST can be solved
by setting xi = f−1(S/τi, µ, λ, S).

4.4 Dynamic controller
SwarmServer implements three dynamic controllers

AIAD, Leveler, and AntFarm, which optimize MIN COST,
MIN MAX, and MIN AVG objectives respectively.

4.4.1 AIAD
AIAD optimizes the MIN COST objective. AIAD is

extremely simple and works as follows. Suppose the
target average download time of the swarm is τ and
the file size is S. The controller initializes the server
bandwidth x to S/τ . Once every epoch, it measures
the average download rate, y, of peers in the swarm.
If S/τ > y, it increases the server bandwidth x by ∆.
Otherwise it decreases x by ∆, except in the case that
the decrement would cause x to dip below a minimum
bandwidth threshold. In our implementation, the epoch
length is set to 200 seconds, ∆ is set to 10 KBps, and
the minimum bandwidth threshold is set to 5 Kbps.

4.4.2 Leveler
Leveler optimizes the MIN MAX objective. The con-

troller starts with an equal split of server bandwidth
among all swarms. Once every epoch, the controller
measures the average download rate of all swarms. The
server bandwidth is increased by a small, fixed ∆ for
swarms whose download rate is lower than the median
of average download rates. Similarly, the controller
reduces the server bandwidth by ∆ for each swarm
with average download rate higher than the median
value. Similar to AIAD, the controller never reduces
the server bandwidth allocated to a swarm below a min-
imum threshold. Epoch length, ∆, and the minimum
bandwidth are the same as in AIAD.

4.4.3 AntFarm
AntFarm optimizes the MIN AVG objective. This

controller is similar to that used in [19], which has the
same name.

At the start, AntFarm assigns the total server band-
width, X, to swarms in small increments. Initially, each
swarm is assigned a small bandwidth ∆1. In each time
epoch, it increments the server bandwidth by ∆2 for the
swarm that shows the maximum value of the following
term: (increase in average download rate since the pre-
vious update of server bandwidth) × (peer arrival rate).
We use ∆1 = 5 KBps, ∆2 = 10 KBps, and epoch length
= 200 s in our implementation.

The bandwidth allocation in steady state is computed
using “response curves” for each swarm. The response
curve, y = f(x), where y is the average download rate,
x is the server bandwidth. Let λi denote the arrival rate
of the i-th swarm. Given the response curves for a set
of swarms, a gradient ascent algorithm calculates the
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bandwidth allocation to swarms as follows: (1) Start
with x1 = x2 = · · · = xk = δ for a small δ; (2) Allocate
the next δ units of capacity (divided equally) to the
swarm(s) with the largest value(s) of the λif(xi + δ)−
f(xi); (3) If all X units of capacity have been allocated,
terminate. Else goto (2).

AntFarm builds response curves for the mean down-
load rate vs. server bandwidth. To this end, the server
obtains periodic measurements of the average download
rate by perturbing the server bandwidth by ∆3 once ev-
ery epoch and fits a piecewise linear function that min-
imizes the least square error to fit the measured points.
Each perturbation of the server bandwidth is used to
refresh the response curve and recompute bandwidth
allocations as in the above paragraph. The value of
bandwidth perturbation, ∆3, is set to 5 KBps and epoch
length of perturbation is set to 200 seconds.

4.5 Static controller
We implement the following static controllers in Swarm-

Server: BitTorrent, EqualSplit, PropSplit. BitTorrent
sets an upload limit at the server for a set of swarms
but does not set a per-swarm limit. The server band-
width to each swarm by the server is determined by the
number of peers connected to the server. EqualSplit
splits the available server bandwidth equally among all
swarms. PropSplit splits total server bandwidth pro-
portional to the peer arrival rate for each swarm.

5. EVALUATION
Our comparison of controller strategies, presented in

this section, answers two main questions: (1) Do dy-
namic and model-based controllers improve performance
over static controllers? If yes, then by how much? (2)
Which type of controller, dynamic or model-based, per-
forms better for the objectives in §4.2? Our experiments
show that model-based controller outperforms dynamic
controllers on all three objectives we compared. Static
controllers cannot equal a model-based controller either;
they perform well on some workloads and objectives but
fare poorly on others.

5.1 Experimental setup
We performed our evaluation using about 350 Plan-

etLab nodes for our experiments. In addition, a server
and a tracker for all swarms were hosted on two ma-
chines at our university. We used an instrumented Bit-
Torrent client used in [12]. Peer inter-arrival times as
well as peer upload and download capacities are the
same we used in our measurements. Since multiple Bit-
Torrent clients may be running on the same PlanetLab
node, the maximum upload limit was imposed individ-
ually on each client instead of each PlanetLab node.

5.2 Average download time
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Figure 7: Average time spent by peers in all the
swarms for Zipf workload. Simple approaches
(e.g., Equal Spit) and online controllers (e.g.,
AntFarm) incur a higher download time in the
initial phase as well as in steady state.
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First, we compare controllers on the MIN AVG ob-
jective. We select a workload consisting of 20 swarms
whose mean arrival rates are chosen according to a Zipf
distribution with parameter 1.5. The mean arrival rates
of the most popular swarm and the least popular swarm
is 0.5/s and 0.0055/s respectively. Each swarm dis-
tributes a file of size 10 MB. The total server bandwidth
is set to 200 KBps.

Figure 7 shows how the average download time changes
over time for the different compared schemes. The aver-
age is computed using the download time of peers that
completed their download within the previous 2000 sec
interval as well as the resident time, i.e., the time since
arrival, for peers whose downloads are under progress.

There are two main observation from the experiment
in Figure 7. First, in the initial phase, EqualSplit, Bit-
Torrent and AntFarm incur much higher average down-
load times than PropSplit and CheatSheet, and their
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average download times take considerably longer to sta-
bilize. Second, even after all controllers have reached
steady state, CheatSheet achieves a download time that
continues to be lower (by at least 25%) compared to all
other schemes (that perform roughly similarly in steady
state in this experiment).

The explanation for these observations is as follows.
EqualSplit, BitTorrent and AntFarm have a very high
download time at the start of the experiment because
they assign a small server bandwidth to large and small
swarms alike. If the initial server bandwidth is small,
a huge number of peers build up in highly popular
swarms, which is reflected in the corresponding down-
load time curves that rise rapidly. For example, the
download times in EqualSplit increase rapidly until about
1500 sec as no peers have departed until then. At this
point, the download time drops sharply as a result of
a horde of peer departures that occur when the last
block in a swarm has been uploaded by the server. In
contrast, both CheatSheet and PropSplit assign higher
bandwidth to popular swarms from the start, so peer
departures start much quicker in popular swarms con-
siderably reducing their average download times. We
note here that CheatSheet is implemented so as to be-
gin with an allocation identical to PropSplit until it has
a stable estimate of peer arrival rates, at which point it
switches to the model-based optimal allocation.

EqualSplit, BitTorrent and AntFarm take consider-
ably longer to reach steady state because the number
of peers in highly popular swarms goes through multi-
ple rounds of ramp-ups followed by bulk departures be-
fore stabilizing. In this experiment, AntFarm takes the
longest time to converge to a steady state because after
assigning 5 KBps to each swarm at the beginning, it al-
locates remaining bandwidth in small chunks of 5 KBps
once every 200 sec. AntFarm requires many such 200
sec epochs in order to build a stable response curve for
all swarms, resulting in higher download times during
this convergence phase. We have observed (not shown
for brevity) that reducing the epoch length does not
help and sometimes hurts performance as it increases
the measurement error in learned response curves.

Why does CheatSheet outperform other schemes even
in steady state? Figure 8 shows the steady-state alloca-
tions of server bandwidth achieved by different schemes
that explain this observation. Swarms are ordered from
left to right in decreasing order of popularity. Cheat-
Sheet uses the model to predict that the most popu-
lar swarm is mostly self-sustaining and therefore needs
only a small bandwidth to achieve healthy download
times. Compared to other controllers, CheatSheet as-
signs higher bandwidth values to the next four popular
swarms that belong to a regime where a small amount
of server bandwidth disproportionately improves perfor-
mance, which considerably reduces the average down-
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Figure 9: Maximum average download time
across swarms for the Zipf workload.
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Figure 10: Maximum average download time
across swarms for three self-sustaining swarms
and one singleton swarm.

load time. PropSplit and AntFarm by design assign
the most bandwidth to the most popular swarm, but
the extra server bandwidth hardly benefits that swarm.
BitTorrent is biased more towards the popular swarms
(as it receives more peer connections from these swarms
compared to singleton swarms), but its allocation is
nevertheless sub-optimal. EqualSplit clearly makes a
sub-optimal decision by allocating equal bandwidth to
all swarms in the light of the above reasons.

5.3 Min-max average download time
Next, we compare controllers on the MIN MAX ob-

jective, i.e., minimizing the average download time of
the swarm that has the worst average download time.
We conduct experiments with two different workloads:
(1) a Zipf workload same as that in the previous subsec-
tion, and (2) a workload dominated by popular swarms.
We set the total server bandwidth to 500 KBps in both
experiments.

5.3.1 Zipf workload results
Figure 9 shows the average download time of the

swarm with the maximum average download time (re-
ferred to as MAD time in this discussion). We observe
that, even though the workload is the same, the rela-
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tive performance of controllers is different compared to
the experiment in the previous subsection. The MAD
time achieved by PropSplit is twice as worse as other
controllers that have relatively smaller differences be-
tween them. Both EqualSplit and CheatSheet achieve
the lowest MAD time. BitTorrent incurs a higher MAD
time in comparison to EqualSplit. The performance of
Leveler varies with time because it changes the server
bandwidth to each swarm periodically and struggles to
converge to a steady bandwidth allocation as it shuffles
bandwidth across 20 swarms. The reason (not visible in
the figure) is that different swarms take different times
to manifest the effect of the most recent change. Lev-
eler sometimes “panics” and allocates more bandwidth
to the currently worst swarms too quickly and at other
times is too slow to move bandwidth away from swarms
that could do without it. The fluctuating performance
of Leveler reveals that it is nontrivial to design a robust
dynamic controller.

Unpopular swarms, i.e., swarms with a small peer ar-
rival rate, impact the MAD time significantly in this
experiment. Unpopular swarms require higher band-
width than popular swarms to achieve the same down-
load time (Figure 2). Due to the Zipf popularity dis-
tribution, a majority of swarms for this workload are
unpopular. PropSplit incurs the highest MAD times be-
cause it assigns the least bandwidth to the most unpop-
ular swarm, which significantly increases the download
time of that swarm. EqualSplit, unlike PropSplit, as-
signs equal bandwidth to all the swarms and hence has
a much smaller MAD time. CheatSheet performs the
same as EqualSplit because the unpopular swarms in
the workload have nearly the same performance in both
cases. Due to a large number of unpopular swarms,
CheatSheet only assigns 5 KBps more bandwidth to
each unpopular swarm than EqualSplit, which does not
sufficiently impact the MAD times.

5.3.2 Heavy-head workload

Does EqualSplit achieve the least MAD times in all
scenarios? Our experiment with heavy-head workload
shows that it is not the case. This workload is domi-
nated by popular swarms and consists of three highly
popular swarms each with a peer arrival rate of 0.5/s
and a fourth unpopular swarm with a peer arrival rate
of 0.01/s. The total number of swarms is small in this
experiment as we are limited by the total number of
reasonably reliable nodes we could find on PlanetLab.
The total server bandwidth is set to 120 KBps.

Figure 10 shows the MAD time over time for differ-
ent swarms. Figure 11 (analogous to Figure 8) shows
the corresponding bandwidth allocation decisions made
by different controllers. Unlike the Zipf workload ex-
periment, EqualSplit has a significantly higher MAD
time than CheatSheet. This is because CheatSheet al-
locates twice the bandwidth to the least popular swarm
compared to EqualSplit (swarm 4 in Figure 11). So
this swarm incurs nearly twice the download time com-
pared with EqualSplit than with CheatSheet, which is
reflected in the corresponding MAD times. Leveler con-
verges to the same value of the MAD time as Cheat-
Sheet over time. Unlike the previous Zipf workload,
Leveler happens to converge more smoothly with this
heavy-head workload workload consisting of just four
swarms. This experiment illustrates that performance
of static controllers such as EqualSplit can vary depend-
ing on the workload.

5.4 Target download time
Next, we compare CheatSheet and AIAD against the

MIN COST objective. We do not compare against the
simplistic static schemes as they are designed to always
use all available capacity (and can therefore be made to
appear arbitrarily worse by choosing a sufficiently low
target download time in an experiment). Our workload
for this experiment consisted of six swarms with peer
arrival rates of 0.5/s, 0.14/s, 0.12/s, 0.1/s, 0.08/s, and
0.01/s. All swarms distributed a file of size 10 MB. The
target download time for all the swarms is set to 150
sec. For brevity, we only present detailed results for
arrival rates 0.5/s, 0.12/s, and 0.01/s here. Results for
other arrival rates are qualitatively consistent and are
omitted due to lack of space.

Figure 12 shows the average download time achieved
by each strategy over the duration of the experiment.
Figure 13 just below shows the corresponding server
capacity set by the controllers over the same duration.
The actual bandwidth consumed at the server is very
close to the configured capacity shown in Figure 13 ex-
cept during intervals when there happen to be no peers
in the swarm.

Figure 12 shows that CheatSheet meets the target
download time well in all cases, but AIAD sometimes
significantly exceeds the target download time as in the
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(b) λ = 0.12/s
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Figure 12: Average download time of controllers with target download time = 150 s. CheatSheet
meets the target well but AIAD fails to meet target for λ = 0.12/s
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(b) λ = 0.12/s
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Figure 13: Server bandwidth set by controllers. AIAD fails to meet the target for λ = 0.12/s as it
drastically reduces server bandwidth near 3000 s.

later part Figure 12(b). This is because AIAD is not
always able to accurately estimate the relation between
server bandwidth and the download time. To illustrate
this point, Figure 14 shows the measured download rate
of the swarm and the server bandwidth limit set by
AIAD during this experiment. At t = 2200 s, the mea-
sured download rate of swarm is above the correspond-
ing target download time (10 MB / 150 s = 67KBps).
Hence it decreases the server bandwidth to 40 KBps at t
= 2200 s and then to 30 KBps at t = 2400 s. This causes
the measured download rate to drop sharply which is
reflected in the increased download time of peers in Fig-
ure 12(b). The download time curve shows an increase
somewhat later as it is calculated as an average over a
window of 2000s.

We also experimented by changing the interval after
which AIAD updates bandwidth to 300 sec, but it con-
tinues to fluctuate above the target download time. Of
course, if the bandwidth update interval is increased
to a sufficiently high value and the bandwidth incre-
ments/decrements made small, the AIAD controller will
converge to the target download rate. However, it will
take longer to converge and will be less responsive if
peer arrival rates change.

CheatSheet consumes much less bandwidth compared
to AIAD for λ = 0.5/s especially in the first 2000 sec-
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Figure 14: Server bandwidth set by AIAD in
response to measured download rates for λ =
0.12/s.

onds of the experiment. While AIAD takes several
cycles of measurement and perturbations to reach the
bandwidth allocation, CheatSheet directly jumps to the
minimal required bandwidth using its model.

5.5 Summary and discussion
In summary, our evaluation shows that bandwidth

allocation done by static controllers is hit-or-miss. A
static controller that works well for one objective and
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workload combination may perform poorly for others.
This is intuitively unsurprising and is also consistent
with the findings in prior work analyzing a specific op-
timization objective [19]. For a fixed performance ob-
jective however, the simplicity of static controllers may
outweigh their sub-optimality (e.g., EqualSplit for the
MIN MAX metric or PropSplit for the MIN AVG met-
ric).

Our evaluation also shows that designing a dynamic
controller for scenarios involving peer arrivals and de-
partures is nontrivial. Although dynamic controllers are
generally superior to any given simplistic static scheme
when evaluated over a range of objectives and work-
loads, we find that they are far from optimal. Indeed, in
some scenarios, simple schemes like EqualSplit or Prop-
Split outperform dynamic control. The reason is that
measuring the relationship between swarm performance
and allocated bandwidth in an online manner is non-
trivial. As a result of measurement errors, a dynamic
control scheme is vulnerable to prolonged convergence
delays or persistent fluctuations.

The experiments in this paper suggest that a model-
based approach is feasible and promising. We find that
when a model-based controller is given a cheat sheet
based on prior measurements in the regime of interest, it
consistently outperforms both static and dynamic con-
trollers for different objectives and workloads.

Nevertheless, having gone through the experience of
making a model-based controller work, our conclusions
about its practicality are somewhat mixed. A model-
based approach will work well only if (1) all the model
parameters can be estimated accurately, and (2) the
controller has access to an accurate model of swarm
performance with respect to those parameters. The
first requirement is challenging primarily because the
effective peer upload capacity distribution may not be
known or be stationary because of several reasons.

First, network conditions can significantly change the
effective upload capacity distribution as shown in §3.2.6.
Second, the user population for any particular content
may have a (persistently) different upload capacity dis-
tribution than the general population at a managed
swarming site, say because only high capacity peers
are interested in very large high-definition movie files.
In such cases, the model-based approach entails ad-
ditional offline measurement to estimate the content-
specific peer upload capacity distribution and to build
corresponding response curves. Third, peers may down-
load files from multiple swarms simultaneously or oth-
erwise limit their upload capacity. If the aggregate ef-
fect of all of these factors makes the peer upload capac-
ity distribution non-stationary and unpredictable, the
model-based approach is unlikely to be effective.

6. RELATED WORK

Our primary contribution is a comparative analysis of
different categories of bandwidth controllers for client-
assisted content delivery systems and the design and im-
plementation of a model-based control approach, that
to our knowledge has not been attempted before. Our
work builds upon a large body of prior work that can
be grouped into dynamic controllers, models of swarm
behavior, and swarm seeding strategies.

Dynamic controllers: Peterson et al. [19] take a
dynamic controller approach to server bandwidth allo-
cation in managed swarms. V-Formation [20] monitors
propagation of each block through the swarm. Based on
the propagation distance of each block, a central coordi-
nator calculates bandwidth allocation from all peers to
all swarms in a multi-swarm setting. Unlike V-Formation,
the model-based controller requires only the aggregate
peer statistics such as average arrival rate, let alone
block-level information from each peer. Our comparison
of controller strategies does not include V-Formation
because its implementation is proprietary and not avail-
able publicly.

Models of swarm behavior: Qiu [22], Fan [6], and
Liao [14] analytically model BitTorrent to derive ex-
pressions for average download time of peers and other
swarm metrics. But, their models make assumptions
that over-simplify swarm behavior. For example, up-
load capacity is homogenous [22], number of peers is
fixed [14], seeds contribute full upload capacity to swarm
[22, 6], and swarm inefficiency is fixed for all swarms
[22]. To address these concerns, we took a measurement-
based approach to model swarm performance.

Guo et al. [8] model the evolution of torrents from
the time they are published till they become unavail-
able due to lack of seeds. Menasche et al. [16] model
content availability in swarming system and show that
content bundling exponentially reduces swarm unavail-
ability. We address the server bandwidth allocation
problem assuming that the server is always online and
content availability is guaranteed.

Stutzbach et al. [26] study the churn due to ar-
rival and departures of peers in three P2P networks,
Gnutella, BitTorrent, and Kad, and characterize churn-
related metrics such as the distribution of session lengths.

Incentive strategies: Several BitTorrent clients that
improve BitTorrent’s incentive strategies have been pro-
posed. Piatek et al. [21] improve BitTorrent’s incentive
strategy by carefully selecting peers and contribution
rates. Levin et al. [13] design a strategy proof BitTor-
rent client. FairTorrent [23] client uses a deficit-based
distributed algorithm to improve fairness.

Dandelion [24] incentivizes peers to contribute band-
width to swarm through the use of virtual currencies
which can be redeemed by content providers for mone-
tary discounts. AntFarm [19] implements a token-based
protocol to limit selfish behavior. Our position is that
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a large majority of users use BitTorrent clients as-is or
use unmodifiable closed-source clients, e.g., Akamai’s
NetSession [1], so incentive issues are less important.

Legout et al. [12, 11] use measurements from an in-
strumented BitTorrent client to analyze specific aspects
of BitTorrent, e.g., unchoking strategy. [12] shows that
BitTorrent’s rarest first strategy ensures close to ideal
piece diversity and its choke algorithm is efficient in
practice and is robust to free riders. [11] establishes
the clustering of similar bandwidth BitTorrent peers,
the effectiveness of BitTorrent’s sharing incentives, and
high upload capacity utilization of peers. In contrast,
our work treats BitTorrent as a black box in building a
measurement-based model of swarm performance.

Seeding strategies: There are two kinds of seeding
strategies relevant in swarming systems: inter-swarm
and intra-swarm. In this paper we focused on the for-
mer, relying on the intra-swarm strategies pre-built in
the mainline BitTorrent. The key element of the intra-
swarm seeding strategy implemented in the mainline
BitTorrent is referred to as super seeding [9], which at-
tempts to minimize the amount of data uploaded by a
seed. Super-seeding, as well as other works that pro-
posed alternative intra-swarm seeding strategies [2, 11,
4], are complementary to ours.

7. CONCLUSIONS
In this paper, we performed a comparative evalua-

tion of strategies to control server bandwidth in client-
assisted content delivery systems. As part of this effort,
we introduced a new approach referred to as model-
based control and presented the design and implementa-
tion of a model-based controller, CheatSheet, that uses
a concise model based on a priori offline measurement
of swarm performance as a function of the server band-
width and other swarm parameters. Our experiments
show that simple static strategies are unreliable as they
perform well on some workloads and objectives but fare
poorly on others. Dynamic control can also lead to
a sub-optimal performance as it is prone to prolonged
convergence delays and persistent fluctuations. In com-
parison, a model-based approach consistently outper-
forms both static and dynamic approaches provided
it has access to detailed measurements in the regime
of interest. Nevertheless, the broad applicability of a
model-based approach may be limited in practice be-
cause of the overhead of developing and maintaining
a comprehensive measurement-based model of swarm
performance in each regime of interest.
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