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Abstract
Production networks are transitioning from the use of physical mid-

dleboxes to virtual network functions (VNFs), which makes it easy

to construct highly-customized service chains of VNFs dynamically

using software.Wide-area service chains are increasingly impor-

tant given the emergence of heterogeneous execution platforms

consisting of customer premise equipment (CPE), small edge cloud

sites, and large centralized cloud data centers, since only part of

the service chain can be deployed at the CPE and even the clos-

est edge site may not always be able to process all the customers’

traffic. Switchboard is a middleware for realizing and managing

such an ecosystem of diverse VNFs and cloud platforms. It exploits

principles from service-oriented architectures to treat VNFs as in-

dependent services, and provides a traffic routing platform shared

by all VNFs. Moreover, Switchboard’s global controller optimizes

wide-area routes based on a holistic view of customer traffic as

well as the resources available at VNFs and the underlying network.

Switchboard globally optimized routes achieve up to 57% higher

throughput and 49% lower latency than a distributed load balanc-

ing approach in a wide-area testbed. Its routing platform supports

line-rate traffic with millions of concurrent flows.

CCS Concepts • Networks→Middle boxes / network appli-
ances; Traffic engineering algorithms; Wide area networks;
Network architectures; •Computer systems organization→

Cloud computing.

Keywords service chains, network functions virtualization, cloud

computing, traffic engineering
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1 Introduction
The core business of large tier-1 network providers such as AT&T

revolves around the deployment of network services such as home

broadband, enterprise VPN, and cellular service. These services
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are implemented by assembling selected network functions such as

routers, gateways, firewalls, proxies, intrusion detection systems,

DDoS scrubbers, and content caches into service chains to realize the
requisite end-to-end semantics. While such service chains have tra-

ditionally been constructed using hardware middleboxes and static

interconnections, next-generation network architectures based on

virtualized network functions (VNFs) and a VNF-centric network
cloud infrastructure offer the opportunity to create new service

types with a faster roll-out at a lower cost, thereby benefiting both

customers and network providers [2, 11, 22].

In this paper, we present Switchboard, a middleware system de-

signed to realize this vision by supporting the dynamic construction

of wide-area service chains in a way that can be optimized based on

network topology, customer traffic, and other factors. Among other

advantages, this system enables service chains to be customized

for each customer, moving beyond today’s static regime in which

all customers in a pool (e.g., business Internet users) receive the

same service features despite their diverse needs. For example, a

logistics enterprise can add specialized network traffic analysis for

its Internet-connected vehicles in response to an emerging security

threat either by creating a new service chain or by instantly in-

serting a new VNF into an existing chain. Moreover, these custom

services can be offered in a way that is agnostic both to the type

of edge network and to user mobility, making the service available

even as users move from home broadband to office Wifi to cellular.

Switchboard’s goal is to facilitate the creation of wide-area ser-

vice chains on an infrastructure that spans customer premise equip-

ment (CPE) [4], small edge cloud sites, and large centralized data

centers. These platforms vary dramatically in the resources they

have available, and range from sites that are internal to ISPs [2], to

sites operated by business customers, to clouds run by 3rd-party

providers. Support for wide-area chaining across such heteroge-

neous execution platforms distinguishes Switchboard from current

approaches that largely support chaining only within a single site

or on a single cloud platform [19, 24, 29, 30, 37]. While a starting

point, the ability to construct wide-area service chains is critical

for production networks given that only part of a service chain

can be deployed on a CPE and even the closest edge site may not

always be able to process all the customers’ traffic due to resource

limitations. Moreover, the ability to build service chains dynami-

cally with support for 3rd-party clouds provides the customization

needed to build solutions such as those outlined above.

A key aspect of Switchboard is that its design exploits principles

from service-oriented architectures (SOAs) [31] by treating each

VNF and each edge network as a platform service. Each such service

is managed independently, and has its own internal structure poten-

tially consisting of multiple instances of the VNF or edge network

across geo-distributed sites. This approach has many advantages.

https://doi.org/10.1145/3361525.3361555
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It hides the complexity of the underlying cloud platform and the

mechanics of running a VNF on that platform, and potentially en-

ables a richer catalog of VNFs by allowing the inclusion of VNFs

running on 3rd party sites. It also allows Switchboard to interface

with the present-day edge networks as well as future edge networks

(e.g., a content-centric edge [23]). In short, it partitions control of

service chains in a way that enables Switchboard to focus on the

core problem of dynamically chaining VNFs across the wide area

in a scalable way.
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Figure 1. Switchboard control and data plane components. Circles

labeled F are the Switchboard forwarders.

Switchboard’s core functionality is realized by the following

three middleware components (Figure 1).

1. Global Switchboard. A centralized controller that performs traffic

engineering for wide-area chains using a scalable cost-based heuris-

tic, and realizes chains by coordinating with VNF and edge services.

Global Switchboard is in essence a Software Defined Networking

(SDN) controller. (Section 4)

2. Switchboard forwarders. A proxy deployable on any cloud that

can chain together VNFs running on a network provider’s internal

sites or 3rd party sites. Forwarders distribute connections among

VNF instances using a hierarchical load balancing approach and

support stateful VNFs by maintaining flow affinity and symmetric

return paths. (Section 5)

3. Switchboard global message bus. A publish-subscribe mechanism

that efficiently exchanges control plane state among Switchboard

and other services. The message bus replicates control plane state

in a fine-grained manner only at the required sites, thereby scaling

to highly geo-distributed deployments. (Section 6)

We have prototyped and deployed Switchboard on private Open-

stack sites, 3rd party clouds, and ISP CPEs. Our prototype uses

controllers based on OpenDaylight [27], a message bus based on

ZeroMQ [49], a homegrown high performance DPDK-based for-

warder [9], edge services based on OpenVPN and OpenFlow, and

open-source VNFs including a caching proxy, a firewall, and a NAT.

We conduct extensive evaluation of Switchboard using prototype

and network traffic simulations. In our experiments, Switchboard

is responsive to dynamic events and can perform the addition of

a new route or a new edge site to a service chain within a second.

Switchboard’s forwarders achieve throughput of 20 Mpps (equal to

80 Gbps for 500-byte packets) for 3 million concurrent flows using

6 CPU cores, and its global message bus achieves an order of mag-

nitude lower latency than broadcast. In an analysis based on tier-1

network datasets, Switchboard’s computationally efficient routing

heuristic outperforms network-based distributed load balancing by

an order of magnitude in throughput and provides latency within

8% of globally optimal routing across chains.

The paper is organized as follows. Section 2 shows how cus-

tomers can use Switchboard to create service chains. Section 3

shows how Switchboard orchestrates service chain creation. Section

4 presents Global Switchboard network model and traffic engineer-

ing schemes. Section 5 discusses the proxy-based load balancing

data plane and its safety and performance. Section 6 presents the

topology of its message bus. Section 7 evaluates Switchboard and

also compares it against alternatives. Section 8 discusses related

work and Section 9 concludes.

2 Building service chains
Switchboard allows users to create custom network services by

stitching together specified VNFs into a service chain. In this section,

we provide a customer-centric view of Switchboard and demon-

strate its wide-area service chaining capabilities across multiple

cloud platforms.

Figure 2. Switchboard customer portal showing creation of a ser-

vice chain with a VPN as ingress, firewall and NAT as the VNFs in

the chain, and Internet as the egress.

Figure 2 shows Switchboard’s customer portal through its web

interface. The portal displays the list of network functions available

in Switchboard, which we envision evolving into an appstore-like

marketplace where an ISP and 3rd-party vendors list VNFs that

can be incorporated into customer service chains. In addition to

selecting a VNF, a customer can define any customer-specific VNF

configuration options through the portal, e.g., its firewall rules or

caching policies. A customer does not need to specify deployment

details such as cloud platform configuration, VNF location, and

capacity, since those are automatic.

A customer defines the structure of a service chain by using the

graphical user interface to specify its ingress, its egress, and the

ordered set of VNFs in the chain. To define ingress and egress for a

service chain, a customer specifies the type of edge network and the
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Figure 3. Demo of a face blurring VNF (running on AWS EC2)

processing video stream from a customer premise equipment.

attributes specific to the edge network. For an enterprise customer

with multiple office locations, for example, the ingress (similarly,

egress) might be defined as the identifier for the customer edge

router on one of its premises. If a service chain only applies to a slice

of traffic at that location, this is specified using additional attributes

such as VLAN IDs, or IP packet header fields such as source and

destination IP prefixes and port ranges along with protocols.

The customer activates the chain through the portal, which

results in automated route computation and installation. Upon

completion, a status message is displayed to the customer. There-

after, traffic between the customer-defined ingress and egress flows

through the ordered VNFs specified in the chain in both directions.

To demonstrate Switchboard’s capabilities, we built an example

application that uses a VNF hosted at a remote site to perform

custom video processing on a customer’s traffic. Our testbed spans

two locations, a local installation that represents a customer loca-

tion and a remote installation in Amazon AWS EC2 [42]. The local

installation consists of three physical devices: a customer-premise

equipment box provided by the ISP (CPE), an IP-enabled webcam,

and a laptop. The webcam and laptop are connected to the CPE via

ethernet cables, and the CPE is connected to the internet over an

ethernet cable. The CPE supports network functions executing in

virtual machines, which we use to run Switchboard’s data plane

forwarder. The remote cloud consists of a video-processing net-

work function and a Switchboard forwarder. The network function

uses a GPU to perform face detection and to anonymize faces for

privacy in real-time.

We define a service chain through the portal with the ingress as

the subnet of the webcam, the egress as the subnet of the laptop,

and the video-processing VNF as the only network function in the

chain. Prior to chain activation, the default chain did not include

any network functions. As a result, the Switchboard forwarder

on the CPE routed traffic from the webcam to the laptop, where

the original transmitted video could be viewed unmodified. After

chain activation, the traffic now flows from the CPE to the network

function at the remote site via the forwarders. The face-anonymized

video stream is then viewed on the laptop as shown in Figure 3. We

measured the end-to-end latency to be under a second, with most

of the latency coming from the video processing at the network

function. The rest of the forwarding and wide-area network transit

typically adds only a few tens of milliseconds of latency.

3 Switchboard operational overview
Switchboard translates a customer’s high-level specification of a

service chain into data plane forwarding rules to connect VNFs

deployed across geo-distributed sites.

Data plane operation. The first packet in a connection (Figure

1 enters at an ingress edge instance, which affixes two labels to it.

The first label identifies the customer and its service chain, and the

second label identifies the egress edge site. The labeled packet is

received by a Switchboard forwarder attached to the ingress edge.

The forwarder uses packet labels to send the packet to an instance

(e.g. VM, container) of the first VNF in the chain, possibly at a

different site. Upon receiving the packet, the VNF instance processes

it and sends it to the adjoining forwarder. This sequence repeats

until the packet reaches an egress edge instance, which removes

its labels and sends it to the destination. Subsequent packets in

the connection in the same direction are routed through the same

instances, and those in the reverse direction of the connection are

also routed through the same instances, but in the reverse order.

Realizing a service chain. Switchboard configures the data

plane elements to realize the above path taken by a packet in the

following three phases.

1. Prior to chain specification. Switchboard’s service-oriented ap-

proach creates the necessary services—VNF, edge, and Switchboard

itself—even before a chain is specified. A VNF service is a multi-

site, multi-tenant service comprised of VNF instances at each site

and a centralized VNF controller. An edge service, similarly, is com-

prised of edge instances and an edge controller. The Switchboard
service is comprised of the Global Switchboard, a local Switchboard
at each site, and forwarders at each site. The local Switchboard

controls the horizontal scaling of forwarders at the site and per-

forms aggregation of messages sent either by or to forwarders. The

communication among these services is facilitated by a global mes-
sage bus to which all data and control plane elements are attached.

Using the message bus, VNF instances and edge controllers register

themselves with Global Switchboard when added to the system,

as well as with one of the forwarders at the site for sending their

traffic.

2. Chain creation time. Service chain creation requires coordina-

tion across various Switchboard services as shown by the arrows in

Figure 4. (1) Upon receiving the chain specification, Global Switch-

board obtains ingress and egress sites for the chain from edge

controllers. (2) Global Switchboard computes wide-area routes be-

tween ingress and egress sites and allocates unique labels to identify

the chain and its wide-area routes. It uses a two-phase commit

protocol to update the route and labels atomically at all edge and

VNF controllers. Two-phase commit allows Global Switchboard to

recompute the route if the proposed route is rejected by a VNF con-

troller due to resource shortage. (3) It propagates these routes and

labels to edge controllers, VNF controllers, and Local Switchboards.

(4) Edge and VNF controllers allocate their instances at the sites in

the wide-area route for this chain and publish their information on

the global message bus. (5) Local Switchboards read edge and VNF

information and combine it with the wide-area routes to compute

load balancing rules, which are finally installed at Switchboard

forwarders.
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Figure 4. Flow of messages to configure a service chain route at chain creation time.

3. Connection setup time. The path of a connection’s packets

throughVNF and forwarder instances is determined by Switchboard

forwarders upon the arrival of the first packet of the connection.

The load balancing rules at a forwarder specify a list of next-hop

VNF or forwarder instances and their weights indexed by the service

chain and egress site labels. A forwarder applies the weighted load

balancing rule corresponding to labels on a packet to select a VNF

or a forwarder instance for this connection. The instance selected

for a flow is stored in a flow table entry for the connection keyed by

the connection’s labels and its header fields (specifically the 5-tuple

of source IP, destination IP, protocol, source port, destination port),

which allows later packets in the connection in the same direction to

be routed through the same instance. A second flow table entry for

the connection stores the previous-hop VNF or forwarder instance,

which allows packets in the connection in the reverse direction to

also be routed through the same VNF and forwarder instances in

the reverse order.

4 Global Switchboard
Global Switchboard provides a platform on which traffic engineer-

ing algorithms can be implemented. To this end, it builds a model

of the network based on data from various sources (Section 4.1),

which enables multiple traffic engineering problems to be addressed

(Section 4.2). It currently supports linear programming-based op-

timizations (Section 4.3) and an efficient dynamic programming

algorithm for traffic engineering (Section 4.4) that are implemented

in an open-source SDN controller (Section 4.5). A comparison of the

performance of the linear programming and dynamic programming-

based approaches appears in Section 7.3.

4.1 Network model
Switchboard models (Table 1) a set of network nodes N with a

latency of dn1n2
between nodes n1 and n2. Cloud sites S are co-

located with a subset of network nodes and have a compute capacity

ofms . A VNF f in the catalog F of VNFs is available at a subset of

cloud sites Sf chosen by the VNF itself. The VNF also defines its

compute capacitymsf at each of those sites. The load per unit traffic

on VNF f ∈ F is denoted by lf as reported by the VNF. Switchboard

models the total load on a VNF at a site to be proportional to the

total traffic sent or received by the VNF at that site.

The set of network chains defined by customers isC . The ingress
and egress of chain c ∈ C are ic ∈ N and ec ∈ N respectively, which

are determined by the edge controller. Generalizations to multiple

Table 1. Parameters of Switchboard’s network model.

Description Notation

Network parameters
Set of network nodes N
Network delay from node n1 to n2 dn1n2
Frac. of traffic from loc. n1 to n2 on link e rn1n2e
Bandwidth of link e be
Background traffic on link e дe
Maximum link utilization (MLU) limit β

Cloud parameters
Set of cloud sites S ⊆ N
Max. allowed load at cloud site s ms

VNF parameters
Set of VNFs F
Set of cloud sites where VNF f ∈ F is deployed Sf ⊆ S
Max. allowed load of VNF f at cloud site s msf
Load per unit forward traffic on VNF f ∈ Fc lf

Chain parameters
Set of network chains C
Ingress (egress) node of chain c ∈ C ic (ec ) ∈ N
Set of VNFs in chain c ∈ C Fc ⊆ F
z-th VNF in chain c ∈ C fcz
Forward (reverse) traffic for chain c ∈ C at stage

z (1 ≤ z ≤ (|Fc | + 1))
wcz (vcz )

ingress and egress nodes are omitted for ease of exposition. The

ordered list of VNFs in chain C specified by a customer is denoted

by Fc and the z-th VNF (1 ≤ z ≤ (|Fc | + 1)) in chain c is denoted by
fcz . A chain is represented as (|Fc | + 2) nodes (including ingress

and egress) and has (|Fc | + 1) logical links between the nodes that

we term stages. The forward (reverse) traffic for chain c ∈ C at stage

z (1 ≤ z ≤ (|Fc | + 1)) is denoted bywcz (vcz ) and is obtained based
on measurements by Switchboard forwarders for existing chains

and on customer estimates for the initial chain deployment.

A network operator can leverage Switchboard for optimizing

its network cost by specifying a constraint on the maximum link

utilization (MLU) β – a commonly used cost function for traffic

engineering [43]. In that case, Switchboard obtains the following

additional inputs from the network operator: the set of links E in the

network, the bandwidth be of each link e ∈ E, the network routing

represented as the fraction rn1n2e of traffic between nodesn1 andn2
that crosses link e , and finally the background (non-Switchboard)

traffic дe on link e .
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4.2 Traffic engineering problems
Chain routing. The routing for a chain is defined by the set of

variables xczn1n2
, which denotes the fraction of traffic for a chain

c at stage z from node n1 ∈ N src
cz to n2 ∈ N dst

cz . This problem

formulation implicitly assumes that the traffic from a chain at each

stage can be split among multiple sites in arbitrary ratios, and that

a VNF can allocate resources to a chain at a site at any granularity.

N src
cz =

{
ic if z = 1

Sfc (z−1)) otherwise (1)

N dst
cz =

{
ec if z = (|Fc | + 1)
Sfcz otherwise (2)

The objective of this problem is to minimize the aggregate latency

of chains weighted by the fraction of traffic along each path for

each chain as expressed below.∑
c ∈C

|Fc |+1∑
z=1

∑
n1∈N src

cz

∑
n2∈N dst

cz

(wcz +vcz )dn1n2
xczn1n2

(3)

VNF capacity planning. This problem seeks to provide hints

to VNF providers for new deployment sites. In particular, given

the number of new sites yf for each VNF f ∈ F , the output of this
problem is the set of sites S ′f that is non-overlapping with existing

sites Sf and the capacities of VNFs at the sites in S ′f that minimizes

the aggregate latency of chains as specified above.

Cloud capacity planning. Given additional cloud resources A
to be deployed across all sites, this problem seeks to decide the re-

source as to be allocated to site S . Since capacity planning decisions
are made to accommodate future increase in traffic demands, this

problem seeks to maximize the factor of increase α over current

traffic of each chain that can be supported, assuming traffic for all

chains and all stages in a chain increases by the same factor.

4.3 Linear programming formulations
Chain routing. Switchboard’s linear program solves the chain

routing problem optimally. The problem lends itself to a linear

program since the optimization objective (Equation 3) and the con-

straints are all linear. We present three key constraints of the prob-

lem here in the interest of brevity.

Compute. The total load across all chains and all VNFs at site

s ∈ S is less than its compute capacity ms . A similar constraint

bounds the total load on a VNF at a site toms f .∑
c ∈C

∑
f ∈Fc :s ∈Sf

lf (
∑

s1∈N src
cz

(wczcf +vczcf )xczs1s+∑
s1∈N dst

c (z+1)

(wc(z+1)cf +vc(z+1)cf )xczss1 ) ≤ ms
(4)

Flow conservation. For chain c ∈ C , the fraction of traffic entering

a VNF at stage z at any cloud site s ∈ S equals the fraction of traffic

at stage (z + 1) that exits from it.∑
n∈N src

cz

xczns =
∑

n∈N dst
c (z+1)

xc(z+1)sn (5)

Network cost. The total traffic on link e ∈ E including background

traffic and service chain traffic across all stages of all chains must

be less than the MLU β .

дe +
∑
n1∈N

∑
n2∈N

rn1n2e (
∑
c ∈C

Tcn1n2ce ) ≤ βbe (6)

Tcn1n2
is a linear term and represents the traffic for chain c from

node n1 to n2 across all stages of the chain combining traffic in

forward and reverse directions.

Tcn1n2
=

∑
z∈{1, · · · ,( |Fc |+1)} : (n1∈N src

cz )∩(n2∈N dst
cz )

wczxczn1n2

+
∑

z∈{1, · · · ,( |Fc |+1)} : (n2∈N src
cz )∩(n1∈N dst

cz )

vczxczn2n1

(7)

VNF capacity planning. Switchboard uses a mixed integer

program (MIP) adapted from the LP for the chain routing problem.

This MIP introduces a new binary variablewf s , the value of which

determines whether the VNF f ∈ F is placed at site s ∈ S or

not. The set of sites Sf where VNF f is deployed now includes all

cloud sites S , since new VNF sites can include all cloud sites. The

remainder of the formulation is updated accordingly. For instance,

a new constraint specifies that unless a VNF f ∈ F is deployed at a

site, i.e.,wf s = 1, the corresponding chain routing variable cannot

take a non-zero value.

Cloud capacity planning. We adapt the LP for the chain rout-

ing problem and makes the following key changes. First, the op-

timization objective is set to maximize the factor of increase α in

chain traffic that can be sustained. Second, the capacity of each

cloud site s ∈ S becomes a variable (ms +as ) instead of the constant
ms , with the constraint that the sum of additional capacity provi-

sioned (

∑
s ∈S as ) is less that A. Finally, the traffic for each chain is

similarly represented as a variable, e.g.,wcz is replaced by αwcz .

4.4 Dynamic programming algorithm
The dynamic programming algorithm computes routing for a single

chain. It evaluates chain routes using a cost function, which is

defined as the sum of latency cost, network utilization cost, and

compute utilization cost. We denote the cost of the path from the

z-th VNF in a chain (including ingress and egress edge VNFs) at

site s to the (z + 1)-th VNF in the chain at site s ′ as cost(s, z, s ′). The
latency cost is numerically equal to the propagation delay from s
to s ′. Utilization-dependent costs are based on a piecewise-linear

convex function that increases exponentially with utilization at

values above 0.5 [15]. Network utilization cost is the weighted sum

of costs of links that route traffic from s to s ′, weighted by the

fraction of traffic carried on each link. Compute utilization cost is

calculated from the utilization of the (z + 1)-th VNF at site s ′.
For each pair of ingress and egress sites, the algorithm computes

a list of sites such that the z-th VNF in the chain is deployed at

the z-th site in the route. It constructs a table E(z, s) whose entries
denote the least cost for a chain route up to the z-th VNF in a chain

while ending at site s . All entries in E are initialized to +∞, except

for the ingress edge site E(0, ingress) = 0. Entries for z ≥ 1 are

inductively computed as follows until the egress stage is reached.

E(z + 1, s) = min

s ′∈S
E(z, s ′) + cost(s, z, s ′) (8)

The least cost route is calculated by traversing E in the reverse

direction starting from the least latency site for the last VNF in the

chain. If the selected route can carry only a fraction of traffic for a
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Figure 5. Forwarders running in VMs as an elastic service are

incrementally deployable on any platform.

chain due to resource constraints, the algorithm is repeated to find

the next least cost path to carry the remainder of the traffic until

the routes for all the traffic for the chain is computed.

4.5 Implementation
Our prototype implements Global Switchboard as well as other

controllers—Local Switchboard, an edge controller, and some sam-

ple VNF controllers—as modules in the OpenDayLight (ODL) frame-

work [27]. The parameters of the networkmodel (Table 1) for Global

Switchboard are defined using the YANG data modeling language

and data entries are stored as JSON objects. We then implemented

the controller logic that is triggered upon updates to data items, e.g.,

a new chain specification initiates the process of deploying a chain.

The linear programming optimization is implemented using a Java

wrapper to the CPLEX optimization suite [8]. Our implementation

also integrates a Java-based message queue to exchange control

messages [49]. We plan to support fault-tolerance of controllers

using a replication recipe based on MUSIC, a resilient key-value

store optimized for wide-area deployments [6].

5 Switchboard data plane
Switchboard’s data plane consists of a pervasive deployment of

forwarders at every site (Section 5.1) that implement a hierarchical

load balancing solution (Section 5.2). It supports key safety proper-

ties to realize service chains (Section 5.3), while providing line rate

performance using a few cores per server (Section 5.4).

5.1 Deployment
Akey deployment challenge is integrating Switchboard’s forwarders

with multiple cloud platforms such as CPEs, ISP edge clouds and

3rd-party clouds. Forwarders such as those available in Openstack

Neutron [28], OpenContrail [24], and E2 [30] are implemented as a

part of a cloud infrastructure’s networking service running at the

hypervisor layer. Such an implementation is possible in a provider’s

internal sites such as on an ISP edge cloud usually with vendor

support. But, an ISP does not control the features available in a

3rd-party cloud such as EC2 which makes it difficult to deploy a

forwarder. Further, high-performance VNFs bypass the hypervisor

using NIC virtualization techniques such as SR-IOV [38], which

makes it difficult to integrate forwarders even on an ISP-controlled

cloud. These constraints dictate a new approach to forwarding.

Switchboard forwarders provide a cloud platform-agnostic ser-

vice that is deployable in standalone VMs. A VNF instance (e.g.,

green VNF G1 in Figure 5) updates its local routing table to assign

one of the forwarders as the proxy gateway for its service chain

traffic. The VNF and its forwarder are kept in the same layer-2

domain for this interconnection. A forwarder communicates with

another forwarder (possibly in a different site) over tunnels. As

more VNF instances are added at the site, the Local Switchboard

scales the number of forwarders elastically to support those VNF

instances. This approach does not require any integration between

Switchboard and the cloud platform, and only a small routing con-

figuration change at the VNFs. Further, it also provides service

chaining of high-performance VNFs that use NIC virtualization.

5.2 Hierarchical load balancing
A forwarder installs three sets of weighted load balancing rules

using a hierarchical load balancing approach. These include (1)

rules for the VNF instances with which it is associated (e.g., for

F1 to load balance among G1 and G2 in Figure 5), (2) rules for the

forwarders adjoining the next VNF in the chain (e.g., for F1 to load

balance among F2 and F3), and (2) rules for the forwarders adjoining

the previous VNF in the chain (not shown). A forwarder defines

weights by takes the product of site-level weights, i.e., the variable

xczn1n2
in traffic engineering, with the weight of a forwarder or

a VNF instance at that site. A VNF instance publishes its weight

on the message bus. Similarly, a forwarder publishes its weight

based on the sum of the weights of the VNF instances with which

it is associated, e.g., the weight of F2 stored at F1 is the sum of the

weights of O1 and O2.

Labels VNF Load balancing rule

chain1,egress1 Adjacent(green) {G1_IP, G1_load}, {G2_IP, G2_load}

chain1,egress1 Nexthop (orange) {F2_IP, O1_load + O2_load}, {F3_IP, O3_load}

Flow key Adjacent_vnf Nexthop_vnf

(chain1,egress1, srcIP, dst IP, proto, srcPort, dstPort) G2_ip F3_IP

(chain1,egress1, dstIP, srcIP, proto, dstPort, srcPort) G2_ip tunnel_srcIP

Forwarder F1’s load balancing table 

Forwarder F1’s flow table 

tunnel IP header labels customer header payload

Forward flow à

Reverse flow à

Packet from 
preceding
forwarder à

VNF G
Controller

Site A 
Local SB

Site B 
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Controller

global_routes

c1/e3: {edge:e1, vnf_G:site_A, vnf_O:site_B,  edge:e2}}

/c1/e3/vnf_G_instances

{G1_IP, G1_load, F1_IP}, 
{G2_IP, G2_load, F1_IP}

/c1/e3/vnf_O_forwarders

{F2_IP, O1_load + O2_load}, 
{F3_IP, O3_load}

/c1/e3/vnf_O_instances

{O1_IP, O1_load, F2_IP}, 
{O2_IP, O2_load, F2_IP}, 
{O3_IP, G3_load, F3_IP}

Global message bus 

Figure 6. Flow table configuration at forwarders.

We demonstrate the sequence of messages to install a load bal-

ancing rule using Figure 6. To install rules for chain c1 at forwarder

F1, Local Switchboard at the forwarder’s site A receives the wide-

area route for the chain c1 egressing at site e3. The route shows

that the VNF G in the chain will be allocated at the same site A and

the next VNF O will be allocated at site B. Local Switchboard infers

that the forwarders at site A would need to load balance traffic

among VNF G’s instances at site A and then send that traffic to

the forwarders associated with VNF O’s instances at site B. Hence,

it subscribes to the corresponding topics on the message bus—

/c1/e3/vnf_G/site_A_instances and /c1/e3/vnf_O/site_B_forwarders—

to receive the IP addresses and load balancing weights of VNF G’s
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instances and VNF O’s forwarders. These messages define the load

balancing rules installed at F1.

5.3 Safety
A service chain should provide certain safety properties, as follows.

Conformity: A customer’s traffic must be routed through the speci-

fied sequence of VNFs. Flow affinity: All packets of a connection
in a given direction are routed through the same sequence of VNF

instances. Symmetric return: All packets of a connection in both
directions are routed through the same VNF instances. The latter

two properties are needed to support stateful VNFs; specifically,

while some stateful VNF (e.g., traffic shapers) require only flow

affinity, others (e.g., NATs) require symmetric return as well. Below,

we discuss conditions under which these properties are supported

and Switchboard’s mechanisms to do so.

Conformity. Switchboard depends on labels applied by edge

instances for conformity. An edge instance applies the first service

chain label by parsing and matching the packet header fields to

the chain specification. It applies the egress site label using a per-

customer routing table that associates a destination address with an

egress site. We note that existing route redistribution mechanisms

to interconnect multi-site enterprise networks already maintain

such routing tables, e.g., using Virtual Routing Functions [1, 25].

If a VNF supports Switchboard’s labels, forwarders can correctly

apply the load balancing rules to a packet even if that VNF modifies

packet headers. Some VNFs may not support these labels as it may

require non-trivial code changes [12]. Forwarders strip the labels

before sending the packet to such VNFs. To re-affix the labels after

the packet exits the VNF, forwarders must be able to uniquely

associate the exit interface on the VNF with a set of labels. To this

end, a VNF can provision separate instances for each set of labels.

If the same VNF instance is shared among multiple sets of labels,

the VNF must create separate interfaces for each of them.

Flow affinity and symmetric return. The flow table at a for-

warder stores the load balancing selections made upon the arrival

of the first packet in a connection. Figure 6 shows how the flow

entries for the forward and reverse paths are populated. Forwarder

F1’s flow table entries store the adjacent VNF (G1), the next hop for-

warder (F2), and the previous forwarder (not shown). Using these

entries, later packets in a connection in any direction are routed to

the same forwarder and VNF instances.

Forwarders maintain flow affinity and symmetric return despite

changes in the wide-area route of the chain, addition or removal of

VNF instances, or the load balancing weight for a VNF instance. To

this end, forwarders allow existing entries in forwarders to remain

until the completion of a flow and route only new flows on the

new routes. Thus, existing connections continue to be routed to

the same VNF instances in either direction.

Switchboard forwarders provide flow affinity if the VNF in-

stances mapped to it maintain their association. However, elastic

scaling or failure of a forwarder may remap a VNF instance to

another forwarder, violating flow affinity. To safely change the

VNF-to-forwarder mapping, flow table entries can be transferred

across forwarders using recent proposals such as OpenNF [17]. We

are developing a solution that supports elastic scaling and fault tol-

erance of forwarders by maintaining the flow table as a replicated

distributed hash table across forwarder nodes. A discussion of the

DHT-based forwarder is beyond the scope of this paper.

To support symmetric return globally, a flow egressing via an

edge instance at a site must return to it in the reverse direction.

Re-entry at a site is easily achieved for internal traffic between

two customer locations. For Internet traffic to re-enter at the same

site, the egress site should be the (unique) site from which the IP

prefix of this customer at this site is advertised using BGP. Even

if the reverse flow reaches the same site, it could be received at a

different edge instance due to route asymmetry at the site itself.

In these cases, we plan to use the above DHT-based flow table

implementation to locate the original edge instance for the flow

and route the traffic back to it to achieve symmetric return.

5.4 Performance
We evaluate the overhead of Switchboard’s data plane using anOVS-

based forwarder implementation and its throughput for millions of

connections using a DPDK-based implementation.

OVS-based forwarder. The initial implementation of a Switch-

board forwarder used Open vSwitch (OVS) [33], and in particular,

the multipath and learn actions to implement the flow table. We

performed an experiment to quantify the overhead of this forwarder

over a simple bridge, and in particular, the overhead of maintaining

flow affinity rules and additional overlay labels, i.e., MPLS labels

for chain and route identification, and VXLAN tags for tunneling

packets across the wide area. The overhead was measured by send-

ing between 1 and 50 concurrent flows from one VNF instance to

another via the forwarders.

Figure 7 shows the experimental setup and results. Compared

to a normal bridge (c), we find that overlay labels (VXLAN+MPLS)

add between 19-29% overhead (b), and flow affinity rules further

add between 33-44% overhead (a). With more concurrent flows,

the overhead reduces. VXLAN tunnels helps isolate Switchboard’s

traffic in a shared cloud while MPLS labels help it customize service

chains. Flow affinity rules help maintain flow affinity for stateful

VNFs. A service chaining solution that seeks to provide similar

features as Switchboard is likely to incur similar overheads with

OVS-based forwarding. However, a key limitation of the OVS-based

forwarder is the poor scalability upon increasing the number of

flows as shown in Figure 7, which led us to implement a significantly

higher performance DPDK-based forwarder [9].

DPDK-based forwarder.We implemented and deployed aDPDK-

based implementation of a Switchboard forwarder as a standalone

VM on Amazon AWS, a private cloud, and a customer premise

device (CPE) to provide wide-area service chaining. We then evalu-

ated the performance of these forwarders in a scale-out deployment

on SR-IOV-capable NICs. Our testbed is comprised of two servers

directly connected using a 40 GbE cable, each having an Intel Xeon

E5-2470 CPU (2.3GHz) and an Intel XL710 40GbE NIC. One of these

servers hosts forwarder instances while the other hosts traffic gen-

erators and VNFs. We pin each Switchboard forwarder to a single

core and assign a separate SR-IOV virtual interface to it. Each for-

warder receives traffic from a traffic generator [10] and sends it to

a unique VNF instance associated with the forwarder. We generate

minimum sized (64B) UDP packets uniformly distributed among a

fixed number of flows. We report the steady-state throughput as

seen at the VNFs’ interfaces in Figure 8.

The forwarder achieves a high throughput of up to 7 million

pkts/sec (Mpps) with only a single CPU core (left-most bar in the

figure). Each additional forwarder instance increases the through-

put by 3-4 Mpps. Forwarders also show scalability with respect to
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the number of concurrent connections. In the right-most bar in the

figure, six forwarder instances store entries for a total of 3 million

flows (= 512K×6) while still achieving an aggregate throughput

of more than 20 Mpps. The throughput reduces with an increase

in the number of flows due to lower CPU cache hit rates of flow

table entries. In additional experiments with tens of millions of

connection entries, we have found that once the flow table size far

exceeds the CPU cache size, the throughput of a single forwarder

core reaches a steady-state value in excess of 3 Mpps. The latency

introduced by forwarders at the maximum throughput is 1 ms, but

the latency at low to moderate loads is typically a few tens of mi-

croseconds. These latencies are consistent with other studies on

similar hardware [45].

Extrapolating these results to a server with, for example, 32 cores,

suggests that a Switchboard forwarder should be able to support

nearly 100 Mpps, or 400 Gbps of forwarding capacity for an average

packet size of 500 bytes. For a cloud site with say 400 Gbps of wide-

area traffic, the cores available on a single server may be sufficient

to support the throughput, connections and latency requirements

of the service chaining data plane.

6 Global message bus
The global message bus implements a publish-subscribe topology

with an optimized placement of subscription filters that outper-

forms broadcast-based techniques. The decoupling of publishers

and subscribers fits our design, e.g., Global Switchboard does not

need to know of changes in VNFs in a service chain, a forwarder

attached to the VNF does not need to know the set of forwarders

attached to the next or the previous VNF. To scale to hundreds of

cloud sites, dissemination mechanisms should support policies to

control which messages are sent to which sites. However, iBGP—the

de facto tool for route dissemination in ISP networks—scales via

hierarchical route reflectors [7], which takes away the ability to con-

trol which updates are sent to individual sites. Route reflectors must

process all updates and could become dissemination bottlenecks,

necessitating a new approach.

Switchboard’s message bus topology plays a key role in determin-

ing the latency and the number of wide-area messages. Switchboard

implements a message queuing proxy at each site to which all pub-

lishers and subscribers local to that site are connected. Publishers

publish messages to its own site’s proxy, and subscription filters are

installed at the proxy on the publisher’s site. The publisher’s site is
inferred from the topic itself. For example, the subscription of Site

B’s Local Switchboard to the topic /c1/e3/vnf_O/site_B_forwarders

is installed in the proxy at site B. A site with no subscribers for

a topic does not receive the message at all. A site that has any

subscribers for a topic receives a single copy of the message over

a TCP connection between the two proxies that is shared by all

topics. The proxies at subscribers’ sites send the message to their

local subscribers. This approach results in the minimal number of

messages being propagated across the wide-area and also a low

propagation delay.

Switchboard’s message bus helps extend service chains to new

edge sites on-demand, thereby supporting use cases such as user

mobility. When the the traffic from a service chain arrives at a new

edge site, the message bus helps configure edge instances and their

forwarders to route this traffic via the nearest existing wide-area

route for the service chain. The message bus replicates wide-area

routes and labels for all chains in Local Switchboard at every site.

Based on the labels applied by the edge instance receiving a packet,

Local Switchboard first chooses the route that results in the least

latency to the egress site from this edge site. The message bus

provides Local Switchboard with the list of forwarders assigned

to the first VNF in the chain on the selected route. Finally, Local

Switchboard configures forwarders to send traffic on that route

towards the first VNF.

Comparison to broadcast. We compare the global message

bus against a full-mesh broadcast for the setup shown in Figure 9.

The testbed consists of VMs at a single site with emulated wide-

area delays. Full-mesh sends a separate copy of a message for each

subscriber whereas Switchboard only sends a single message for

all subscribers at a site. Full-mesh results in excessive queuing

of messages at the publisher’s site, which results in an order of

magnitude higher latency than Switchboard (Figure 9). Switchboard

also has 57% higher throughput because full-mesh suffers from

message drops due to buffer overflows. These results show that our

message bus topology improves throughput and latency of control

state dissemination by minimizing wide-area messages.

7 Experimental evaluation
In this section, we evaluate responsiveness of Switchboard’s dy-

namic chaining capabilities (Section 7.1), perform end-to-end com-

parison of Switchboard to alternate service chaining approaches

(Section 7.2), and evaluate Switchboard traffic engineering using a

tier-1 network’s dataset (Section 7.3).
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7.1 Dynamic service chaining

Chain route creation.We show Switchboard’s ability to update

chain routes dynamically and quantify the resulting performance

improvements. Our VNF in this experiment is a NAT implemented

using IP tables [35]. We performed this experiment at a single AWS

EC2 site by creating two virtual sites A and B. Our service chain

in this experiment has its ingress at site A and egress at site B.

Initially, our service chain uses only a single NAT instance in site

A. We manually trigger a new chain route creation by requesting

Global Switchboard to create a new route via VNF instances in site

B, which results in traffic being routed via VNF instances in both A

and B.

(1)	Global	SB	
recv req for	
new	route

(2)	VNF-c	
recv req for	
instance

(3)	VNF-c	
publishes	

new	instance	
info

(4)	Local	SB	
recv new	

instance	info
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starts	data	
plane	config

(6)	Local	SB	
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Figure 10

We highlight three findings from this experiment. First, as Figure

10a shows, a chain route update takes a total of only 595 ms. While

an actual wide-area environment will increase the chain routing

update time, our findings show that the overhead of Switchboard’s

control plane implementation is small. Second, in the same figure,

the new chain route minimally affects the performance of the ex-

isting chain route and load is balanced evenly on the two routes.

Third, in Figure 10b, the addition of a new chain route doubles the

total throughput of the service chain compared to the case where

there is no change in chain routing. The increase in throughput

is commensurate to the additional capacity available on the new

chain route. Thus, Switchboard enables VNFs to react to increases

in load that overwhelm the resources in a single site by creating

new routes via other sites.

Table 2. Latency in adding a new edge site to a chain.

Operation Latency
Local SB chooses the 1st VNF’s site 0 ms

Edge instance’s fwrdr receives 1st VNF’s info 63 ms

Edge instance’s fwrdr dataplane configured 93 ms

1st VNF’s fwrdr receives edge’s fwrdr info 74 ms

1st VNF’s fwrdr starts dataplane configuration 233 ms

1st VNF’s fwrdr finishes configuration 104 ms

Edge site addition.Weevaluate the control plane latency of adding

an edge site to a service chain. This scenario arises when a service

chain user connects to a new edge site due to mobility, for example.

Table 2 presents the latency of operations in configuring Switch-

board’s data plane to route traffic from the edge site to the first VNF

in the chain (Section 6). The first three steps show the latency of

configuring the forwarder at the edge site with load balancing rules

and the tunnel to the first VNF’s forwarder. The next three steps

show the latency of configuring the first VNF’s forwarder with

the other end of the tunnel. The latency for the first step is 0 ms

since it involves a simple computation at Local Switchboard itself.

The total latency for the remaining operations is below 600 ms.

This additional latency will be incurred only by the initial packet

arriving at a new edge site. Hence, this experiment suggests that

Switchboard can quickly add new edge sites to a chain to provide

location-independent service chaining.

7.2 Switchboard vs. alternate service chaining approaches

E2E comparison vs. distributed approach. In this experiment,

we show the importance of Switchboard’s visibility across chains,

VNFs, and sites in optimizing chain routing. We performed this

experiment separately onAmazonAWS and on a private OpenStack-

based cloud. On Amazon, we selected two sites with inter-site

RTT of 150 ms. On the private cloud, we partitioned VMs into

two virtual sites and emulated an inter-site RTT of 80 ms. These

latencies are comparable to the maximum wide-area delays within

the US. Our service chain, excluding the ingress and egress edge

services, contains a stateful firewall VNF implemented using Linux

IP tables. We specify two routes for this chain, with ingress and

egress locations as shown in Figure 11a.

We compare Switchboard against two schemes based on dis-

tributed load balancing. Similar to anycast routing [14], Anycast
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Figure 11. Switchboard improves throughput by up to 57% and

latency by up to 49% over distributed load balancing.

selects the site for the next VNF in a chain purely based on prop-

agation latency, ignoring the available network link capacity on

the route and the compute capacity available at that site. Compute-

aware is similar to Anycast in that it considers sites in the order

of lowest latency, but it does not pick a site if it does not have

sufficient compute capacity.

In this experiment, all schemes have prior estimates of inter-site

latency, a chain’s traffic, and VNF capacities. In an actual deploy-

ment, these parameters are obtained from network operators tools

[5], measurements at Switchboard forwarders, and reports by VNF

controllers respectively. Anycast selects the firewall instance at

site A for both chain routes in this experiment. Compute-aware

selects the firewall instance at site A for the first chain route, which

saturates the capacity of that VNF instance. Hence, it selects the

firewall at site B for the second route. Switchboard computes rout-

ing via its LP-formulation to maximize throughput. Its computed

routing distributes load among both instances and achieves the

lowest propagation delays in the wide-area.

Figures 11b and 11c compare schemes based on the total TCP

throughput and the average round trip latency between clients

and servers on all routes. Switchboard’s better load distribution

across instances leads to 34% and 57% higher TCP throughput than

Anycast. Further, Switchboard also achieves a lower latency than

Anycast by 10% and 19% because Anycast has more traffic on its

VNF instance in site A and consequently has longer queuing delays.

Switchboard’s lower wide-area propagation delays result in up to

49% and 43% lower latency compared to Compute-aware (Figure

11a). For the same reason, Switchboard also achieves a higher TCP

throughput than Compute-aware by 39% and 7%. The throughput

of Compute-aware relative to other schemes is worse on Amazon

compared to the private cloud because of the higher latency and

loss rates on wide-area links on Amazon.

While the quantitative improvements are dependent on the pa-

rameters such as VNF capacity, number of VNFs in a chain and

wide-area latencies (see Table 1), these findings show the value of

Switchboard’s global optimization of chain routing over schemes

that lack its visibility across chains, VNFs, and sites.

E2E comparison vs. unified approach. Switchboard’s use of

service-oriented design principles allows a VNF controller to share

a VNF instance among multiple chains. In comparison, the unified

controller approach (e.g., E2 [30] and Stratos [16]) vertically iso-

lates a service chain by creating separate VNF instances for each

chain. In this experiment, the VNF whose instances are shared

across chains is the web cache Squid [39]. Squid intrinsically sup-

ports multi-tenancy by supporting multiple interfaces with custom

caching rules. Our testbed spans two Amazon sites, with a 60ms

RTT between them. We place clients and cache instances on one

site, and the web servers hosting the content on the other site. We

deploy five such service chains and evaluate two scenarios. The

first uses a single cache instance for all chains and the second uses

separate cache instances for each chain, each having one-fifth the

size of the cache in the first case. Our workload follows a Zipf

distribution with exponent = 1 and a mean file size of 50 KB.

Table 3 compares the hit rate and the average download time

for this experiment. We observe that sharing of a cache across five

chains achieves 30% higher hit rate and 19% better download time

compared to vertically siloed VNF instances. The explanation is

that a shared cache enables reuse of cached objects across chains,

thereby improving hit rates. In future work, we are investigating

if other types of VNFs besides caches can benefit from sharing of

instances across chains. We also expect shared VNF instances to

lower provisioning costs because they can smooth out the variations

in the traffic of individual chains by aggregation.

Table 3. Advantage of sharing a cache across chains.

Scheme Hit rate Download time
Shared cache inst. 57.45% 56.49 ms

Vertically siloed cache inst. 44.25% 70.02 ms

7.3 Traffic engineering on tier-1 network datasets
Simulation setup.We experimentwith the backbone topology of a

tier-1 network, which includes the link capacities and latencies, and

the network routing.We assume that cloud sites have homogeneous

capacity and are located near the nodes in the topology. Cloud sites

run a total of 100 VNF services. A VNF is located at a fraction of all

sites chosen randomly; we call this fraction the coverage of a VNF.
At a site, capacity is divided equally among all VNF instances at

that site. A VNF is modeled in terms of its compute cost per byte,
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(a) NF coverage
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(b) CPU/byte

�

���

���

���

���

�

� ��� ��� ��� ��� �

��
��
��
�

����

�����
�����

�������

(c) Latency comparison

Figure 12. Switchboard’s optimizations vastly outperform Anycast. SB-DP’s performance is comparable to SB-DP.
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(a) SB-DP microbenchmark
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(b) Cloud capacity planning

�
���
���
���
���
�

� � � �

��
��
��
�

� �� ��� �� �����

�����������
������

(c) VNF capacity planning

Figure 13. (a) SB-DP’s cost function and holistic route computation make it effective. (b, c) Switchboard helps improve cloud and VNF

providers’ baselines for deploying additional capacity.

denoted by CPU/byte. The compute load of a VNF is the product

of CPU/byte and its traffic (in bytes/sec). We study the effect of

coverage and CPU/byte in experiments below.

We use a snapshot of the tier-1 backbone traffic matrix collected

in March 2015 to derive the traffic volume for each service chain.

Network traffic is divided among Switchboard traffic and back-

ground traffic (e.g., transit traffic) in the ratio 4:1. Our workload

consists of 10000 chains, whose source and destination nodes are

chosen randomly. The traffic for a chain is proportional to the traffic

at its ingress site. Each chain contains between 3 to 5 VNFs selected

randomly. The sequence of VNFs in all chains is consistent with a

pre-determined order of VNFs in agreement with typical sequences

of VNFs in service chains, e.g., firewall is placed before a NAT.

Wide-area routing comparison. We compare the throughput

achieved by the different schemes first. In Figure 12a, a higher NF

coverage means that VNF instances are available at more locations,

potentially alleviating wide-area network bottlenecks and improv-

ing throughput. A higher coverage does improve the throughput of

Switchboard’s routing schemes (SB-LP and SB-DP) that validates

their network load-aware design. Anycast has more than an order

of magnitude worse throughput than these schemes. It is unable

to use a better NF coverage to improve its throughput because it

always chooses the closest site hosting a VNF instance based on

propagation delay, ignoring the network load on the path to that

site or the available compute resources at that site.

In Figure 12b, low values of CPU/byte depict scenarios where

the network is the bottleneck, whereas higher values of CPU/byte

depict scenarios where the VNF’s compute capacity is the bottle-

neck. Switchboard’s schemes vastly outperform Anycast in all

scenarios since Anycast is oblivious to either compute or network

load. Surprisingly, SB-DP performs close to SB-LP with the differ-

ence being between 0%-11% (Figure 12a) and 11%-36% (Figure 12b),

even though SB-LP’s objective function in these experiments is to

maximize its throughput.

Figure 12c evaluates latency for an increase in load assuming

traffic for all chains increases by the same factor. Anycast cannot

handle loads higher than 10% of the load sustained by SB-LP. Its

latency is over 40% higher than SB-LP at low loads. Thus,Anycast’s

per-hop routing performs poorly on the latency metric as well.

SB-DP achieves a latency within 8% of SB-LP, even though SB-

LP’s objective function in this experiment is to minimize its latency.

While SB-DP uses a simple, fast heuristic, SB-LP has much higher

running time of up to 3 hours in this experiment. These and the

above results suggest that SB-DP should perform well in practice

and scale to larger topologies, and hence could be used as the

primary routing scheme. However, SB-DP is a heuristic and may

not work well in worst-case scenarios. Hence, SB-LP can run in the

background at longer time scales than SB-DP and suggest better

routes if such worst-case scenarios occur persistently.

To explain why SB-DP performs well, Figure 13a compares the

throughput of two variants of SB-DP: DP-LATENCY and ONEHOP.

DP-LATENCY uses only the propagation latency as its cost function.

ONEHOP uses the same cost function as SB-DP, but it computes

routes on a per-hop basis. SB-DP improves throughput by up to

6× and 2.3× over DP-LATENCY and ONEHOP respectively. While

ONEHOP is consistently worse than SB-DP for any coverage, DP-

LATENCY is worse than SB-DP when the coverage is less than

0.75. The key insight from this experiment is that both factors

contribute to SB-DP’s performance: its use of a cost function that
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considers latency, compute load, and network load, and its holistic

computation of the entire service chain route.

Capacity planning. This experiment evaluates Switchboard’s

effectiveness in guiding cloud and VNF operators’ decisions regard-

ing capacity planning. In Figure 13b, Switchboard’s algorithms for

cloud capacity planning improve maximum throughput by up to

22% over the alternative of provisioning capacity uniformly across

sites. In Figure 13c, we find that Switchboard’s placement hints for

deploying VNFs on new sites provide up to 27% lower latency than

randomly selecting new sites.

Summary and future work.We find that Switchboard’s global

visibility across chains, VNFs, and sites improves service latency

and throughput over decentralized schemes such as anycast and

random site selection. A key insight is that our cost function for

dynamic programming, which combines compute utilization, net-

work utilization, and propagation delay using a simple heuristic,

performs close to ideal on a real ISP topology and traffic dataset. In

our future work, we plan to extend our network model to include

time-varying traffic matrices and design routing algorithms for

it. Another important area is to evaluate performance and cost

metrics in case of network and compute failures. Finally, jointly

optimizing Switchboard’s traffic engineering and ISPs’ wide-area

traffic engineering is an interesting topic of future work [43].

8 Related work
Switchboard’s novel features including wide-area service chaining

and an SDN-controlled service-oriented architecture build upon a

number of notable efforts in the following areas.

Service-oriented design. Switchboard is inspired by service-

oriented architectures [31] for designing rich web services by com-

bining standalone services based on protocols such as SOAP [40]

that aid discovery and composition. More recently, the XOS [32]

project for designing a cloud operating system shares our service-

oriented approach. While XOS provides abstractions for layering

and composition of services, we provide a concrete architecture for

wide-area service chaining that explicitly defines the functionality

of VNFs, edge services, and Switchboard in the platform. Distinct

from a service-oriented design, our work proposes a holistic op-

timization of chain routing to construct service chains with low

latency while increasing network throughput.

Service chaining. Several efforts provide mechanisms for ser-

vice chaining. APLOMB [44] proposes outsourcing of enterprise

middleboxes to cloud datacenters, focusing on a specific type of

wide-area chaining between an enterprise site and a cloud datacen-

ter. Other SDN-based solutions for service chaining have addressed

the design of high-level Service Chaining APIs (ODL) [26] and

compatibility with hardware OpenFlow switches (SIMPLE) [36]. In

comparison, Switchboard seeks to construct arbitrary wide-area

chains across any set of cloud sites and addresses the scalability of

the control and data planes across a large number of sites.

ONAP [34] and its precursor ECOMP [3] are frameworks being

developed by the telecom industry and AT&T respectively to de-

sign and orchestrate network services. As a general framework,

ONAP would allow the implementation of the different Switch-

board components as micro-services. For example, Switchboard’s

optimization algorithms could be implemented as micro-services

in the OOF (ONAP Optimization Framework), ONAP SDN-C could

be extended to support the configuration of the Switchboard for-

warders, and ONAP DCAE could be used for data collection and

analytics. Overall, Switchboard comes with a number of features to

support wide-area chaining that goes far beyond the functionality

of the current implementation of ONAP.

Segment Routing [13] and Network Services Headers [37] use

source routing for service chaining. However, source routing can

inflate packet header sizes, especially when using IPv6 headers

or when routing though long chains of VNFs. In contrast, Switch-

board’s data plane uses label switching whose data plane overhead

remains low even for longer chains.

DYSCO [48] supports dynamic reconfiguration of service chains

(e.g., for VNF insertion) on ongoing connections without breaking

them. Switchboard takes a simpler approach of only routing new

connections via the reconfigured chains. Integrating DYSCO as part

of forwarders would help us better support dynamic chaining.

Traffic engineering. Traffic engineering for service chains has

seen prior work in optimization frameworks [20, 21] as well as rout-

ing algorithms [18, 41, 46]. In contrast to prior work, we pose new

traffic engineering problems for service-oriented designs such as

capacity planning and site selection for services. Also, we consider

the interaction of overlay service chain routing with the underlying

network routing, and propose a new dynamic programming algo-

rithm for this problem that performs close to linear-programming

based optimization on a tier-1 network dataset.

Switchboard can be compared toGoogle’s Espresso [47]. Espresso

is inter-domain traffic engineering solution that chooses an egress

peering location and a network port at that location for each IP

prefix but Switchboard computes overlay routes for chains of VNFs

among sites managed by an ISP or on 3rd party clouds.

9 Conclusions
Service chaining is a critical capability in emerging network archi-

tectures based on VNFs, and one for which we contend no existing

solution finds the right balance between VNF independence, dy-

namic control, and support for wide-area operation and multiple

clouds. Switchboard is a middleware that alters this balance by

splitting control between a global Switchboard controller and in-

dependent VNF controllers, thereby enabling holistic optimization

across wide-area chains while supporting a rich ecosystem of VNFs.

Switchboard’s design rests on a scalable wide-area control plane

in which control plane messages are efficiently propagated using a

publish-subscribe event bus and a scale-out data plane that provides

hierarchical, flow affinity preserving load balancing deployable on

any cloud. Experimental results based on our ODL+OVS/DPDK-

based prototype and tier-1 network datasets demonstrate the effec-

tiveness of this approach in terms of latency, throughput, scalability

and responsiveness of its components. Future work will focus on

improving the traffic engineering aspects of the system and on

continuing to gain practical experience with realistic applications.
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